Midterm Exam 1. Math 451, Fall 2015, Prof. Vershynin

1. (10 points) Let S be a subset of \mathbb{R}. Suppose S is bounded above, and some upper bound u is an element of S. Prove that $\sup S=u$.

Solution. We have to show that:
(i) $\forall s \in S$, one has $s \leq u$;
(ii) $\forall u^{\prime}<u \exists s^{\prime} \in S$ such that $s^{\prime}>u^{\prime}$.

Statement (i) is nothing but the assumption that u is an upper bound of S. As for statement (ii), we can choose $s^{\prime}:=u$ to see that it is true. Q.E.D.
2. (10 points) For each of the following statements, decide if it is true or false. Prove or give a counterexample.
(a) (5 points) There exists a sequence of irrational numbers which converges to a rational number.
(b) (5 points) There exists a sequence that has a bounded subsequence but has no convergent subsequences.

Solution. (a) This is true. Indeed, let $a>0$ be an irrational number, and let $x_{n}:=a / n$ for $n \in \mathbb{N}$. Then $\left(x_{n}\right)$ is a sequence of irrational numbers that converges to 0. Q.E.D.
(b) This is false. Indeed, assume that $\left(x_{n}\right)$ contains a bounded subsequence. Then, by Bolzano-Weierstrass Theorem, this subsequence must contain a convergent subsequence. Q.E.D.
3. (10 points) Compute the limit

$$
\lim \left(\sqrt{4 n^{2}+n}-2 n\right)
$$

Solution. Multiplying and dividing by the conjugate, we obtain

$$
\begin{aligned}
\sqrt{4 n^{2}+n}-2 n & =\frac{\left(\sqrt{4 n^{2}+n}-2 n\right)\left(\sqrt{4 n^{2}+n}+2 n\right)}{\sqrt{4 n^{2}+n}+2 n} \\
& =\frac{n}{\sqrt{4 n^{2}+n}+2 n}=\frac{1}{\sqrt{4+1 / n}+2}=: x_{n} .
\end{aligned}
$$

Since $\lim (1 / n)=0$, using the limit theorems we obtain that

$$
\lim x_{n}=\frac{1}{\sqrt{4+0}+2}=\frac{1}{4} .
$$

4. (10 points) Let $\left(x_{n}\right)$ be a sequence that converges to a non-zero limit. Prove that all except finitely many terms x_{n} are non-zero.

Solution. Assume the contrary, namely that there are infinitely many zero terms x_{n}. In other words, there exists a subsequence $\left(x_{n_{k}}\right)$ such that $x_{n_{k}}=0$ for all $k \in \mathbb{N}$. Then $\lim x_{n_{k}}=0$. On the other hand, since $\lim x_{n}=x \neq 0$, the limit of any subsequence $\left(x_{n_{k}}\right)$ must be $x \neq 0$. This is a contradiction. Q.E.D.
5. (10 points) Let $\left(x_{n}\right)$ be an increasing sequence and $\left(y_{n}\right)$ be a decreasing sequence. Assume that $x_{n} \leq y_{n}$ for all n. Prove that both sequences converge.

Solution. The assumptions imply that

$$
x_{1} \leq x_{n} \leq y_{n} \leq y_{1} \quad \text { and } \quad y_{1} \geq y_{n} \geq x_{n} \geq x_{1} \quad \forall n \in \mathbb{N}
$$

Thus both sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are monotone and bounded. By Monotone Convergence Theorem, they converge. Q.E.D.
6. (10 points) Prove that

$$
\lim \frac{n!}{n^{n}}=0
$$

Solution. Note that

$$
\frac{n!}{n^{n}}=\frac{1 \cdot 2 \cdots n}{n \cdot n \cdots n}=\frac{1}{n} \cdot\left(\frac{2 \cdots n}{n \cdots n}\right) \leq \frac{1}{n} \quad \forall n \in \mathbb{N}, n \geq 2 .
$$

Since $\lim (1 / n)=0$, the Squeeze Theorem implies that $\lim \left(n!/ n^{n}\right)=0$. Q.E.D.

