HOMEWORK 13 HDP KNU+ FALL 2022

Hints are in the back of this homework set.

Bacteria reacts positively or negatively to d different factors, such as acidity, temperature, availability of food, etc. While d can be huge, only few factors are important for the life of bacteria, say $s \ll d$ of them. We want to determine which factors are important.

To this end, we conduct an experiment with n independent bacteria. For each bacteria, we record all d factors, and whether the bacteria thrived or died.

We model this mathematically by assuming that all d factors are independent N(0,1) random variables. Assume that bacteria lives if the sum of all *important* factors is positive, and dies if this sum is negative.

In the following two problems, we find the set of important factors from $n = O(s \log d)$ bacteria. That's great! Since the logarithmic function grows slowly, this sample size n almost does not depend on the total total number of factors d, which can be huge.

PROBLEM 1 (SPARSE LEARNING)

(a) Express the experiment in the context of supervise learning. Namely, represent the training data as $(X_1, Y_1), \ldots, (X_n, Y_n)$, where the vector of factors of *i*-th bacteria is $X_i \sim N(0, I_d)$, the (unknown) vector $w^* \in \{0, 1\}^d$ encodes which factors are important and which are not, and the state of *i*-th bacteria is

$$Y_i = \operatorname{sign}\langle w^*, X_i \rangle.$$

Introduce the hypothesis class \mathcal{H} so that

$$|\mathcal{H}| = \binom{d}{s} \le d^s.$$

(b) Assume that $n \geq Cs \log d$ with a sufficiently large absolute constant C. Show that the generalization error of the ERM algorithm satisfies

$$R(h_n^*) \le 0.001$$

with probability at least 0.99.

PROBLEM 2 (SPARSE LEARNING CONTINUED)

(a) To prepare for the next step, prove the following inequality for $g \sim N(0, I_d)$ and any fixed pair of unit vectors $u, v \in \mathbb{R}^d$:

$$0.878||u-v||_2^2 \le \mathbb{E} \left(\operatorname{sign}\langle u, g \rangle - \operatorname{sign}\langle v, g \rangle\right)^2.$$

¹There are two caveats though: (a) our additive model may be too simplistic, and (b) our ERM algorithm can be too slow. For practical algorithms, see *sparse dictionary learning*.

(b) Deduce from the previous two parts (Problem 1(b) and Problem 2(a)) that

$$\|w_n^* - w^*\|_2^2 \le 0.01s$$

where w^* is the unknown vector from (a), and w_n^* is the output of the ERM algorithm.

(c) Interpret (b) as stating that at most 0.01s coordinates of w_n^* and w^* can be different. Conclude that we can find the set of s important factors up to 1% of error.

PROBLEM 3 (VC DIMENSION: EXAMPLES)

(a) Let \mathcal{H} be the class of indicators of half-finite intervals, i.e. \mathcal{H} consists of functions of the form $\mathbf{1}_{(-\infty,a)}$ and $\mathbf{1}_{(b,\infty)}$, where $a,b\in\mathbb{R}$. Prove that

$$vc(\mathcal{H}) = 2.$$

(b) Let \mathcal{H} be the class of indicators of all convex sets in \mathbb{R}^2 . Show that

$$vc(\mathcal{H}) = \infty.$$

PROBLEM 4 (Two Bounds on VC dimension)

(a) Prove that for any finite class of Boolean functions \mathcal{H} , we have

$$vc(\mathcal{H}) \leq \log_2 |\mathcal{H}|$$
.

(b) Prove that for any finite-dimensional class of Boolean functions \mathcal{H} , we have

$$vc(\mathcal{H}) \leq dim(\mathcal{H}),$$

where $\dim(\mathcal{H})$ denotes the linear algebraic dimension of \mathcal{H} , i.e. the maximal number of linearly independent functions in \mathcal{H} .

TURN OVER FOR HINTS

HINTS

HINTS FOR PROBLEM 1.

- (a) Include in the hypothesis class \mathcal{H} all functions of the form $h(x) = \operatorname{sign}\langle w, x \rangle$, where w is.....(describe it yourself).
- (b) Adopting the quadratic loss, write down the expression for R(h). Notice that $R(h^*) = 0$. (Recall that by our assumptions, factors exactly determine the state of the bacteria.) Then apply the generalization bound from Lecture 35, November 23.

HINTS FOR PROBLEM 2.

- (a) Open up the squares on each side, use Grothendieck's identity (Lecture 17, October 10) and a linearization of arccosine (Fact on p.3 of Lecture 17, October 10).
- (b) Do this for the unit vectors $u = w_n^* / \sqrt{s}$ and $v = w^* / \sqrt{s}$.

HINTS FOR PROBLEM 3.

(b) Consider an arbitrarily large number of points $\{x_1, \ldots, x_n\}$ that lie on a circle. Label these points with labels 1 and -1 arbitrarily. Find a convex set that includes all the points labeled 1, and excludes all points labeled -1. (A picture for n = 5 would be enough.)

HINTS FOR PROBLEM 4.

- (a) Consider the "restricted class" $\mathcal{H}|_{\{x_1,\dots,x_d\}}$ obtained by restriction of each function $h \in \mathcal{H}$ onto the subset $S := \{x_1,\dots,x_d\}$. (Thus the functions in the restricted class have domain S.) If S is shattered by \mathcal{H} , then the restricted class consists of all 2^d Boolean functions on the d-element set S.
- (b) The restricted class consists of all Boolean functions on a d-element set, so it has linear algebraic dimension d. (Check!)