HOMEWORK 2 PROBABILITY FOR DATA SCIENCE, FALL 2022

In all problems of this homework, and also in the future homework sets, C_1, C_2, \ldots denote positive absolute constants of your choice. Thus, whenever you see C_1 , you can replace it any positive constant you like, for example 10 or 100. Usually, you will find it easier to choose big values, so $C_1 = 100$ might be a good choice. Remember that these constants may not depend on anything, so $C_2 = \sqrt{n}$ is not a valid choice, for example.

The first problem is about an arbitrary set of n unit vectors in \mathbb{R}^n , i.e. vectors x_1, \ldots, x_n satisfying $||x_i||_2 = 1$ for all i. Their sum $x_1 + \cdots + x_n$ has norm at most n, due to the triangle inequality. The bound n is obviously optimal, and is attained if all vectors v_i are the same. However, the sum can be made much smaller by carefully selecting the signs for the vectors x_i .

PROBLEM 1 (BALANCING VECTORS)

Let x_1, \ldots, x_n be an arbitrary set of unit vectors in \mathbb{R}^n . Prove that there exist $\varepsilon_1, \ldots, \varepsilon_n \in \{-1, 1\}$ such that

$$\|\varepsilon_1 x_1 + \dots + \varepsilon_n x_n\|_2 \le \sqrt{n}$$
.

Hint: make use of a probabilistic method. Choose ε_i at random and independently, and compute $\mathbb{E}\|\varepsilon_1x_1 + \cdots + \varepsilon_nx_n\|_2^2$. The result in Problem 5 of HW1 can help.

The rest of the problems are about a standard normal random vector X, i.e. a vector $X = (X_1, \ldots, X_n) \in \mathbb{R}^n$ whose coordinates X_i are independent standard normal random variables N(0, 1).

In the first problem, we show that the Euclidean norm of X is tightly concentrated about \sqrt{n} , namely that $||X||_2 = \sqrt{n} + O(1)$ with high probability. Such tight concentration is surprising: the error O(1) is tiny compared to the leading term \sqrt{n} .

Problem 2 (Random vectors have norm $\approx \sqrt{n}$)

Let X be a standard normal random vector in \mathbb{R}^n , where $n \geq C_1$.

(a) Check that

$$\mathbb{E}||X||_2^2 = n$$
 and $\operatorname{Var}(||X||_2^2) = 2n$.

Hint: Expressing the norm squared as a sum, proving the first equation becomes easy. The second equation reduces to computing the expectation of $\|X\|_2^4$. Express this quantity as a double sum. Then use (without proof) the fact that $\mathbb{E} g^4 = 3$ if $g \sim N(0,1)$.

(b) Conclude that

$$||X||_2^2 - n| \le C_2 \sqrt{n}$$
 with probability at least 0.99.

Hint: use Chebyshev's inequality.

(c) Deduce that

$$\frac{1}{2}\sqrt{n} \le ||X||_2 \le 2\sqrt{n}$$
 with probability at least 0.99.

(d) Prove the tighter bound:

$$||X||_2 - \sqrt{n}| \le C_3$$
 with probability at least 0.99.

Hint: use the identity $|a-b|=|a^2-b^2|/|a+b|$ for $a=\|X\|_2$ and $b=\sqrt{n}$. Part (b) gives an upper bound on $|a^2-b^2|$, and $\|X\|_2\geq 0$ yields a lower bound on |a+b|.

The next problem offers yet another look into the strange worlds in high dimensions. If we choose two random vectors X and Y independently at random in \mathbb{R}^n , they happen to be almost orthogonal to each other with high probability (despite their knowing nothing about each other)!

PROBLEM 3 (RANDOM VECTORS ARE ALMOST ORTHOGONAL)

Let X and Y be independent standard normal random vectors in \mathbb{R}^n , where $n \geq C_3$.

(a) Check that

$$\mathbb{E}\langle X, Y \rangle^2 = n.$$

(b) Deduce that

$$\langle X, Y \rangle^2 < C_4 n$$
 with probability at least 0.99.

(c) Denote by θ the angle between the vectors X and Y, as shown in the figure below. Prove that

$$\left|\theta - \frac{\pi}{2}\right| \le \frac{C_5}{\sqrt{n}}$$
 with probability at least 0.97.

Hint: use the formula $\cos^2(\theta) = \frac{\langle X,Y \rangle^2}{\|X\|_2^2 \|Y\|_2^2}$. Part (b) gives an upper bound on the numerator, and part (c) of Problem 2 yields a lower bound on the denominator. Take the intersection of the three events, each of which happens with probability at least 0.99.

