LECTURE 10

- Since $\|x\|_{L^{p}}=\left(\mathbb{E}|x|^{p}\right)^{1 / p}$ is a norm, maybe $\|x\|=\ln \left(\mathbb{E} e^{x}\right)$ is a norm? NO : homogeneity fails (HF)
- A fix: Instead of defining a normlixll, define the unit ball B first;

- B determines which vectors x have norm $\|x\| \leq 1$ - Hen extend $11: 11$ to all vectors by homogeneity:
"Minkowski functional" $\|x\|=\inf \left\{k>0: \frac{x}{k} \in B\right\}$
(*)

TuM let B be a convex, origin-symmetri set in a vector space V.
If Minkowski functional is finite $\forall x \in V$,
then it defines a norm on V. Moreover, $B=\{x \in V:\|x\| \leq 1\}$ is a closed ball (?)
$B:=\left\{\right.$ rv's $\left.X: \mathbb{E} e^{|x|} \leq 2\right\}$ is convex, origin symmetric \Rightarrow
$\|x\|=\inf \left\{K: \frac{x}{k} \in B\right\}=\inf \{k: \mathbb{E} \exp (|x| / k) \leq 2\}$ is a norm!
More generally.
Def A function $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is called an Orlicz function if ψ is convex, increasing, and

$$
\psi(x) \rightarrow\left\{\begin{array}{l}
0 \text { as } x \rightarrow 0 \\
\infty \text { as } x \rightarrow \infty
\end{array}\right.
$$

Ex: $x^{p}, \quad e^{x}-1, \quad e^{x^{2}}-1$
Prop If ψ is an Orlicz function, the set $\{r$ variables $x: \mathbb{E} \psi(|x|) \leq 1\}$ is convex and origin-symmetriz.
Thus:
Def If ψ is an Orlicz hunction, the "Orlica norm"

$$
\|x\|_{\psi}:=\inf \{k>0: \mathbb{E}(|x| / k) \leq 1\}
$$

defines a norm on the "Orlicz space"

$$
L_{\psi}:=\left\{r, v^{\prime} s x:\|x\|_{\psi}<\infty\right\}
$$

- Ex: (a) $\psi(x)=x^{p} \Rightarrow L^{p}$
(b) $\psi(x)=e^{x}-1 \Rightarrow \angle p \supset L_{\psi} \supset L^{\infty}$
$\forall p \geq 1$ $-1-\quad x \sim N(0,1)$ belongs to C_{ψ}

SUBGAUSSIAN DISTRIBUTIONS.

- Recall Koeffding's inequality: if $x_{i} \sim$ Symber id, then

$$
\begin{equation*}
\mathbb{P}\left\{\left|\frac{1}{\sqrt{N}} \sum_{i=1}^{N} x_{i}\right| \geqslant t\right\} \leq 2 \exp \left(-\frac{t^{2}}{2}\right) \quad \forall t \geqslant 0 \tag{*}
\end{equation*}
$$

'gaussian tail
if $X_{i} \sim N(0,1), X_{i} \sim$ Symmetric Bernoulli, or $X_{i} \sim$ Unif $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

- What is the biggest class of distributions of X_{i} that obey 1.1.?
- For $N=1,(*)$ becomes

$$
\mathbb{P}\left\{\left|x_{i}\right| \geqslant t\right\} \leqslant 2 \exp \left(-t^{2} / 2\right) \quad\left(*^{*}\right)
$$

$\Rightarrow X_{i}$'s must satisfy that.

- We call such x_{i} subgaussion riv's
\& We will show that H.1. holds for such x_{i}. (PLAN)
$(* *)=$ " X_{i} is as good as $N(0,1)$ " in many ways.
In what ways? \downarrow
Ski
Space of (sub) gaussian r.v's? (Habitat for gaussian \$ better).
I What do we know about gaussian?
let $g \sim N(0,1)$. Then:
(1) Tails: $\mathbb{P}\{|g| \geqslant t\} \leqslant 2 \exp \left(-t^{2} / 2\right) \quad \forall t \geqslant 0$.
(2) Moments: if ρ is wen,

$$
\begin{aligned}
& \text { 2) Moments : if } p \text { is even, } \\
& \mathbb{E} g^{p} \stackrel{\text { HW1 }}{=}(p-1)!!=1 \cdot 3 \cdot 5 \ldots(p-3)(p-1) \leq \underbrace{p \cdot p \cdot p \ldots p \cdot p}_{p / 2} \leqslant p^{p / 2}
\end{aligned}
$$

(and if $p=0, \mathbb{E} g^{p}=0$).
$\Rightarrow\|g\|_{l p}=\left(\mathbb{E}|g|^{p}\right)^{1 / p} \leq \sqrt{p} \quad \forall p \geq 1$. (MUST grow to ∞)
(3) MGF: $E e^{\lambda g}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\lambda x} e^{x^{2} / 2} d x=e^{\lambda^{2} / 2} \forall \lambda \in \mathbb{R}$
(4) MGF of $g^{2}: \mathbb{E} e^{g^{2} / 4}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e_{e^{-x^{2} / 4}}^{e^{x^{2} / 4} e^{-x^{2} / 2}} d x \leq 2$.
\Rightarrow for Orlicz function

$$
\begin{aligned}
& \text { for Orlicz function } \\
& \psi_{2}(x):=e^{x^{2}}-1, \quad \mathbb{E} \psi_{2}(|g| / 2) \leq 1 \Rightarrow\|g\|_{\varphi_{2}} \leq 2 .
\end{aligned}
$$

(1) - (4) are equivalent for \forall distribution!
lemma (SuGgaussian distributions)
\forall random variable x, the following are equivalent:
(i) (tails): $\exists k_{1}: \mathbb{P}\{|x| \geqslant t\} \leq 2 \exp \left(-t^{2} / k_{1}^{2}\right) \forall t \geqslant 0$
(2) (moments): $\exists k_{2}:\|x\|_{L^{p}} \leq k_{2} \sqrt{p} \quad \forall p \geqslant 1$
(3) $\left(\psi_{2}\right): \exists k_{3}$: $\exp \left(x^{2} / k_{3}^{2}\right) \leqslant 2$

Moreover, if $\mathbb{E} X=0$ then (1)-(3) are equivalent to:
(4) (MGF): $\exists K_{5}: \operatorname{Exp}(\lambda x) \leq \exp \left(K_{4}^{2} \lambda^{2}\right) \quad \forall \lambda \in \mathbb{R}$.

Ar. V.Xthat satisfies one (and thus all) of properties (1)-(4) is called subgaussian.

The proof of (1) $\Rightarrow(2)$ is based on
Lem (Integrated Tail Formula) \forall nonnegative r.v. X,

$$
\mathbb{E} x=\int_{0}^{\infty} \mathbb{P}\{x>t\} d t
$$

$$
\begin{aligned}
& {[\forall x \in \mathbb{R}, \quad x=\int_{0}^{x} d t=\int_{0}^{\infty} \underbrace{1}_{\{t<x\}} d t \begin{array}{ll}
1+f t<x \\
0 & f \\
0 & t \geqslant x
\end{array}\}}
\end{aligned}
$$

let $x=X$, take expectation \Rightarrow

$$
\mathbb{E} X=\underbrace{\int_{0}^{\infty} \mathbb{E}_{\{t<x\}}}_{\mathbb{P}\{t<x\}} d t \quad \text { (Fubini) }
$$

Proof of Sulganssian Lemma
(1) $\Rightarrow(2)$: wLOG $K_{1}=1$

$$
\begin{aligned}
& \mathbb{E}|x|^{p}=\int_{0}^{\infty} \mathbb{P}\left\{|x|^{p}>t\right\} d t \quad \text { Changevar } \quad \text { (Integral lemma.) } \\
& =\int_{0}^{\infty} \underbrace{R\{|x|>s\}}_{\hat{\lambda} e^{-s^{2}}} \text { by Pooperty (1). } \\
& =p\left(\frac{p}{2}-1\right)!\quad \text { (hy paxts -DIY) } \\
& \leqslant p \cdot p^{p / 2-1}=p^{p / 2} \\
& \Rightarrow\|x\|_{L} \leq \sqrt{p} \text {. }
\end{aligned}
$$

$(2) \Rightarrow(3)$: WLOG $K_{2}=1$

$$
\begin{aligned}
& \mathbb{E} \exp \left(x^{2} / 100\right)=\mathbb{E}\left[\sum_{p=0}^{\infty} \frac{\left(x^{2} / 100\right)^{p}}{p!}\right] \quad \text { (Vaylor series) } \\
& =\sum_{p=0}^{\infty} \frac{\left(\mathbb{E} x^{2 p}\right.}{100^{p} p!} \leq(\sqrt{2 p})^{p} \leq \sum_{p=0}^{\infty} \frac{(2 p)^{p}}{100^{p}(p!)} \underbrace{1} \\
& \leq \sum_{p=0}^{\infty}(\underbrace{(p / e)^{p}}_{\substack{\frac{2 e}{100}}} \text { (Stirling) } \leq 2
\end{aligned}
$$

(3) \Rightarrow (4) wlog $k_{3}=1$. Use $e^{x} \leq x+e^{x^{2}} \quad \forall x \in R \Rightarrow$

$$
\mathbb{E} e^{\lambda x} \leq \underbrace{\mathbb{E}[\lambda x]}_{0 \text { by assumption }}+\mathbb{E} e^{\lambda^{2} x^{2}}
$$

$\left.\begin{array}{l}\text { - If }|\lambda| \leq 1, \quad \mathbb{E} e^{\lambda^{2} x^{2}} \leq\left(\mathbb{E} e^{x^{2}}\right)^{\lambda^{2}} \quad\binom{\Leftrightarrow\left(\mathbb{E} e^{\lambda^{2} x^{2}}\right)^{1 / \lambda^{2}} \leq \mathbb{E} e^{x^{2}}}{\Leftrightarrow\left\|e^{x^{2}}\right\|_{\nu^{2}} \leq\left\|e^{x^{2}}\right\|_{L^{2}}} \\ \Rightarrow \mathbb{E} e^{\lambda x} \leq\left(\frac{\mathbb{E} e^{x^{2}}}{e^{\lambda^{2}}}\right)^{2} \leq \exp \left(\lambda^{2} \ln 2\right) \quad \text { the since } \lambda^{2} \leq 1\end{array}\right)$
2 by property (3)

- If $|\lambda|>1$-Diy. (or see the book)

$$
-5-
$$

$(4) \Rightarrow$ (1) WCOG $K_{4}=1$.

$$
\begin{aligned}
& \mathbb{P}\{x \geqslant t\}=\mathbb{P}\left\{e^{\lambda x} \geqslant e^{\lambda t}\right\} \quad \text { (multiply by } \lambda \geqslant 0 \text { and } \\
& \leq e^{-\lambda t} \underbrace{\sqrt[\Sigma]{ } e^{\lambda x}}_{{ }^{1} e^{\lambda^{2}}} \text { (property 4) } \\
& =\exp \left(\lambda^{2}-\lambda t\right) \text {. Minincize in } \lambda \Rightarrow \lambda=t / 2 \Rightarrow \\
& =\exp \left(-t^{2} / 4\right) \text {. Repeat for }-x \Rightarrow \text { Q } D
\end{aligned}
$$

quantitative aspects

- Subganssion is a qualitative notion (yes /no). But:
- $K_{1}, K_{2}, K_{3}, K_{4}$ in Sulganssian Comma are all equivalent up to cebsalecte const.facturs:

$$
\overline{k_{i} \leq c_{i j} K_{j}} \quad \forall i, j=1,2,3,4 \quad\left(C_{K E} c_{k!}\right)
$$

\Rightarrow they all captwe the \approx same quantity.

- We call this quantity the subgausian norm
- Why norm? the smallest K_{3} in property (3) equals
$\|x\|_{\psi_{2}}$, the Orlicz norm for $\psi_{2}(x)=e^{x^{2}}-1$
\& all other K_{i} 's are equivalent \Rightarrow
Subs. Lemma restated:
(i) (tails):

$$
\mathbb{P}\{|x| \geqslant t\} \leq 2 \exp \left(-t^{2} /\|x\|_{\psi_{2}}^{2}\right) \quad \forall t \geqslant 0
$$

(2) (moments):

$$
\|x\|_{L^{p}} \leq C\|x\|_{\psi_{2}} \sqrt{p} \quad \forall p \geqslant 1
$$

(3) $\left(\varphi_{2}\right)$.

$$
\sqrt{ } \exp \left(c x^{2} /\|x\|_{\psi_{2}}\right) \leq 2
$$

Moreover, if $\mathbb{E X}=0$ then
(4) (M/F):

$$
\mathbb{E} \exp (\lambda x) \leq \exp \left(C\|x\|_{\varphi_{2}}^{2} \lambda^{2}\right) \quad \forall \lambda \in \mathbb{R} .
$$

