LECTURE 2

- One more example of how probability can help in high dim's: computational geometry
- Def $A$ set $T \subset \mathbb{R}^{n}$ is convex if $\forall x, y \in T, \quad[x, y] \in T$ interval

. $\underline{E x}_{x}$

non-convex
- How can one transform nonconvex set $\rightarrow$ convex?

Def The convex hull of a set $T \subset \mathbb{R}^{n}$, denoted $\operatorname{com}(T)$, is the smallest convex set that contains $T$.

Ex: (a) $\operatorname{comv}(\square)=$ $\square$
(b) $: \frac{\operatorname{con}\{a, b\}}{b}$
(c)

(d)
$T=$ cities in Ukraine


FACT (CONVEX COMBINATION)
$\forall z \in \operatorname{conv}(T)$ can be expressed as

$$
\begin{equation*}
z=\sum_{i=1}^{m} \lambda_{i} z_{i} \text {, where } \lambda_{i} \geqslant 0, \sum_{i=1}^{m} \lambda_{i}=1, \quad z_{i} \in T \tag{*}
\end{equation*}
$$

- PROOF: DIY (do it yourself).
- (*) is called a "convex combination". It is a linear combination, similar to a basis expansion of $z$, bret non-unique (if $m>n$ )

Q. Computing convex hull: how large is $m$ ? $\mathbb{R}^{n}$
Caratheodory Thu $\forall$ point in conv $(T)$ can be expressed as a convex combination of $\leq n+1$ points from $T$.

Ex Kyiv $\in$ com \{Lutsk, Chernihiv, Simpheropol\}

$$
n=2 \text {. }
$$

Remark, $n+1$ is unimprovable (e.g. in the Kyiv example above)
But: f we allow to cupproximate $x$, then a dramatic impovement!
THM (Approx. Caratheodory) let $T \subset \mathbb{R}^{n}, \operatorname{diam}(T) \leq 1$.
Then $\forall x \in \operatorname{com}(T), \forall k \in \mathbb{V} \exists x_{1}, \cdots, x_{k} \in T$ :

$$
\left\|x-\frac{1}{k} \sum_{i=1}^{k} x_{i}\right\|_{2} \leq \frac{1}{\sqrt{2 k}}
$$

Eudidean norm in $\mathbb{R}^{n}$.
Remark y Dimension - free!
Does rot depend on $n$ or geometry of $T$.
Proof by a probabilistic method: the "empirical method of Maurey"
WILL USE STANDARD FACTS OF PROBABILITY:
(1) Def of expectation of a discrete r.v. $X$ if $X$ takes values $x_{i}$ with prob. $p_{i}$,

$$
\mathbb{E} X \xlongequal{=} \sum_{i} p_{i} x_{i} \quad\left(\begin{array}{l}
\text { analogous to continuous case } \\
\text { where } \\
E
\end{array}=\int_{-\infty}^{\infty} x p(x) d x\right. \text { ) }
$$

(2) $\operatorname{Var}(x)=\mathbb{E}(x-\mathbb{E} x)^{2}=\mathbb{E}\left(x^{2}\right)-(\mathbb{E} x)^{2} \xlongequal{(*)} \frac{1}{2} \mathbb{E}\left(x-x^{\prime}\right)^{2}$ where $X^{\prime}$ is an independent copy of $X$
(i.e. $x, x^{\prime}$ are independent and have the same distribution)

Proof of ( $(*): \mathbb{E}\left(x-x^{\prime}\right)^{2}=\mathbb{E}\left(x^{2}-2 x x^{\prime}+\left(x^{\prime}\right)^{2}\right]$

$$
\begin{aligned}
& \left.x-x^{\prime}\right)=\mathbb{E}\left(x^{2}-2 x x^{\prime}+\left(x^{\prime}\right)\right] \\
& =\mathbb{E}\left(x^{2}\right)-2 \mathbb{E}(x) \underbrace{\mathbb{E}\left(x^{\prime}\right)}_{\mathbb{E} x}+\underbrace{\mathbb{E}\left(x^{\prime}\right)^{2}}_{\frac{1}{\mathbb{E}} x^{2}} \text { (same distribution) } \\
& =2\left(\mathbb{E}\left(x^{2}\right)-(\mathbb{E} x)^{2}\right)=2 \operatorname{Var}(x) . \quad \text { QED. }
\end{aligned}
$$

(3) Extend ( $*$ ) for random vectors $x$ in $\mathbb{R}^{n}$;

$$
\begin{aligned}
& \text { end (*) for randan vectors } X \text { in } \\
& \mathbb{E}\|x \rightarrow \mathbb{E}\|_{2}^{2}=\frac{1}{2} \mathbb{E}\left\|x-x^{\prime}\right\|_{2}^{2} \text { where } x^{\prime} \text { is an indep cops of } x \text { (HW2) } \\
& -3 \text { - }
\end{aligned}
$$

Proof of Approximate C.T.

- Fix $x \in \operatorname{com}(T)$, express it as a convex combination
- Interpret $\lambda_{i}$ as probabilities, the sum as expectation Let r.vector $Z$ take value $z_{i}$ with prob. $\lambda_{i}$

$$
\Rightarrow \quad x=\mathbb{E} Z
$$

- Consider indep copies $Z_{1}, Z_{2}, \ldots$ of $Z$.

$$
\begin{aligned}
& \text { Consider indep copies } E_{1}, E_{2}, \ldots \text { of } Z . \\
& \text { SLLN: } \frac{1}{k} \sum_{i=1}^{k} Z_{i} \rightarrow \mathbb{E} Z=x \quad \text { ass. }
\end{aligned}
$$

- Error:

$$
\begin{aligned}
& \mathbb{E}\left\|x-\frac{1}{k} \sum_{i=1}^{k} z_{i}\right\|_{2}^{2}=\mathbb{E}\left\|\frac{1}{k} \sum_{i=1}^{k}\left(z_{i}-\underset{\underset{\mathbb{E}}{\|} z_{i}}{\|}\right)\right\|_{2}^{2} \\
& x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n} \quad\|x\|_{2}^{2}=x_{1}^{2}+\cdots+x_{n}^{2} \\
& =\frac{1}{k^{2}} \sum_{i=1}^{k} \underbrace{\text { (variance of sum sum of variances, for vectors) }}_{{ }_{\mathbb{E}\|Z-\mathbb{E} Z\|_{2}^{2}}^{\mathbb{E}\left\|Z_{i}-\mathbb{E} Z\right\|_{2}^{2}}} \begin{array}{c}
H \omega 2
\end{array} \\
& \begin{array}{l}
=\frac{1}{k} \mathbb{E}\|z-\mathbb{E} z\|_{2}^{2}=\frac{1}{2 k} \mathbb{E} \underbrace{\|}_{\text {diam }^{\left\|z-z^{\prime}\right\|_{2}^{2}}} \text { ( } T \text { ) } \leq 1 \text { since (3) previous page) } z, z^{\prime} \in T \\
\leq \frac{1}{k} .
\end{array}
\end{aligned}
$$

- $\Rightarrow$ ヨ realization of the riv's $z_{1}, \ldots, z_{k}$ s.t.

$$
\left\|x-\frac{1}{k} \sum_{i=1}^{k} z_{i}\right\|_{2}^{2} \leq \frac{1}{2 k} . \quad \text { Since } z_{i} \in T, \quad Q E D
$$

Application of Approx. Caratheodory Thu:
Cocktail Problem You are given $N$ glasses with different cocktails, each made by mixing $n$ ingredients in different proportions. Make a glass of cocktail with given proportions $p_{1}, \ldots, p_{n}$.


Equivalently, we need to find $\lambda_{1}$ (portion of glass 1), $\lambda_{2}$ (port of glass 2)...
such that: $\quad p=\sum_{i=1}^{N} \lambda_{i} z_{i}, \quad \lambda_{i} \geqslant 0, \quad \sum_{i=1}^{N} \lambda_{i}=1$
proportions reed and sum to $100 \%$ to le nonnegative

- i.e.w need to express $P$ as a convex combination of vectors $z_{1}, \ldots, z_{N}$
- "Convex program" finds a solution in polognomial tine.

$$
\uparrow
$$

- Approx. Caratheodory Thu transforms it into an approximate solution with $\frac{\text { few }}{p}$ glasses, nixed in equal proportions; independent of $n, N-5$ a fast randonized alg.

Relevance of cocktail problem
(a) (Portfolio Guiding)
ingredients $=$ stocks
glass of cocktails $=$ mutual funds
empty glass = porthlio
Problem: create a new mutual fund with a given combination of stocks
by combining the mutual funds that we available on the market.

Solution: as above - a fast randomized algorithm builds a portfolio with few mutual funds.
(b) (Factor analysis)
$z_{1}, \ldots, z_{N}=a$ dictionary of factors
that need to explain $z=$ behavior (consumer, animal, etc)
Sol: behavior is explained by fee w factors.
$z=\sum \lambda_{i} z_{i} \Rightarrow$ factor 1 explains $\lambda_{i} \%$ of behavior,
$\Rightarrow$ A PARSIMONIOUS MODEL.

