• One more example of how probability can help in high dim's computational geometry

Def: A set $T \subseteq \mathbb{R}^n$ is **convex** if $\forall x, y \in T$, $[x, y] \subseteq T$.

Ex:
- Convex
- Convex
- Non-convex
- Non-convex

• How can one transform nonconvex set \rightarrow convex?

Def: The **convex hull of a set** $T \subseteq \mathbb{R}^n$, denoted $\text{conv}(T)$, is the smallest convex set that contains T.

Ex:
(a) $\text{conv}([a, b]) = [a, b]$
(b) $A \rightarrow B$
(c) $A \rightarrow B$
(d) $A \rightarrow B$

T = cities in Ukraine

\[\text{conv}(T)\]
FACT (CONVEX COMBINATION)

\[\forall z \in \text{conv}(T) \text{ can be expressed as} \]

\[z = \sum_{i=1}^{m} \lambda_i z_i, \text{ where } \lambda_i \geq 0, \sum_{i=1}^{m} \lambda_i = 1, \ z_i \in T \quad (*) \]

PROOF: DIY (do it yourself).

(*) is called a "convex combination". It is a linear combination, similar to a basis expansion of \(z \), but non-unique (if \(m > n \)).

\[\begin{align*}
 \text{Ex:} & \quad z = \frac{1}{4} z_1 + \frac{1}{4} z_2 + \frac{1}{4} z_3 + \frac{1}{4} z_4 \\
 \text{Ex:} & \quad z = 0.4 z_1 + 0.3 z_2 + 0.2 z_3 + 0.1 z_4
\end{align*} \]

\[\text{conv} \{ z_1, z_2, z_3, z_4 \} \]

Q: Computing convex hull: how large is \(m \)?

Caratheodory Theorem: \(\forall \) point in \(\text{conv}(T) \) can be expressed as a convex combination of \(\leq n+1 \) points from \(T \).

Ex: Kyiv \(\in \text{conv} \{ \text{Lutsk, Chernihiv, Simpheropol} \} \) \(n=2 \).
Remark: $n+1$ is unimprovable (e.g. in the Kyiv example above).

But: if we allow to approximate x, then a dramatic improvement!

Theorem (Approx. Carathéodory) Let $T \subset \mathbb{R}^n$, $\text{diam}(T) \leq 1$.

Then \(\forall x \in \text{conv}(T), \forall k \in \mathbb{N} \quad \exists \ x_1, \ldots, x_k \in T: \)

\[\left\| x - \frac{1}{k} \sum_{i=1}^{k} x_i \right\|_2 \leq \frac{1}{\sqrt{2k}} \]

where Euclidean norm in \mathbb{R}^n.

Remark: Dimension-free!

Does not depend on n or geometry of T.

Proof by a probabilistic method: the "empirical method of Maurey"

Will use standard facts of probability:

1. Def of expectation of a discrete r.v. X:

 If X takes values x_i with prob. p_i,

 \[E[X] \overset{\text{def}}{=} \sum_i p_i x_i \]

 (analogous to continuous case)

 \[\text{where } E[X] = \int_{-\infty}^{\infty} x \, p(x) \, dx \]

2. \(\text{Var}(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2 \)

 \(= \frac{1}{2} E[(X - X')]^2 \) (linearity & independence)

 \(\text{where } X' \text{ is an independent copy of } X \)

 (i.e. X, X' are independent and have the same distribution)

 Proof of (2):

 \[E[(X - X')^2] = E[X^2 - 2XX' + (X')^2] \]

 \[= E[X^2] - 2E[X]E[X'] + \left(E[X']^2 \right) \]

 \[= \frac{1}{2} E[(X - X')]^2 \]

 (same distribution)

 \(\text{where } X' \text{ is an independent copy of } X \)

3. Extend (2) for random vectors X in \mathbb{R}^n:

 \[E\|X - E[X]\|_2^2 = \frac{1}{2} E\|X - X'\|_2^2 \]

 where X' is an independent copy of X (HW2)
Proof of Approximate C.T.

1. Fix $x \in \text{conv}(T)$, express it as a convex combination

 \[x = \sum_{i=1}^{m} \lambda_i z_i, \quad \lambda_i \geq 0, \quad \sum_{i=1}^{m} \lambda_i = 1, \quad z_i \in T. \]

 - potentially large

2. Interpret λ_i as probabilities, the sum as expectation

 let r.vector Z take value z_i with prob. λ_i

 \[\Rightarrow \quad x = E[Z] \]

3. Consider indep. copies Z_1, Z_2, \ldots of Z.

 SLLN: $\frac{1}{k} \sum_{i=1}^{k} Z_i \rightarrow E[Z] = x \quad \text{a.s.} \]

 \[P(E) \]

4. Error:

 \[E \left\| x - \frac{1}{k} \sum_{i=1}^{k} Z_i \right\|^2 = E \left\| \frac{1}{k} \sum_{i=1}^{k} (Z_i - \frac{1}{k} E[Z]) \right\|^2 \]

 \[x = (x_1, \ldots, x_n) \in \mathbb{R}^n \quad \|x\|^2 = x_1^2 + \ldots + x_n^2 \]

 \[= \frac{1}{k^2} \sum_{i=1}^{k} E \left\| Z_i - E[Z] \right\|^2 = \frac{1}{k^2} \sum_{i=1}^{k} \frac{\|Z_i - E[Z]\|^2}{E\|Z - E[Z]\|^2} \]

 (variance of sum = sum of variances, for vector)

 \[= \frac{1}{k} E \left\| Z - E[Z] \right\|^2 = \frac{1}{2k} E \left\| Z - Z' \right\|^2 \]

 (fact 3 previous page)

 \[\leq \frac{1}{2k} \]

 \[\Rightarrow \exists \text{ realization of the r.v.'s } Z_1, \ldots, Z_k \text{ s.t.} \]

 \[\| x - \frac{1}{k} \sum_{i=1}^{k} Z_i \|_2 \leq \frac{1}{2k}. \quad \text{Since } z_i \in T, \quad \text{QED} \]

 \[-4 - \]
Application of Approx. Carathéodory Thm:

Cocktail Problem: You are given N glasses with different cocktails, each made by mixing n ingredients in different proportions. Make a glass of cocktail with given proportions p_1, \ldots, p_n.

Equivalently, we need to find λ_1 (portion of glass 1), λ_2 (portion of glass 2), \ldots such that:

$$p = \sum_{i=1}^{N} \lambda_i z_i, \quad \lambda_i \geq 0, \quad \sum_{i=1}^{N} \lambda_i = 1$$

proportions need \text{ to be nonnegative }

\begin{itemize}
 \item i.e., we need to express p as a convex combination of vectors z_1, \ldots, z_N
 \item Convex program finds a solution in polynomial time.
 \item Approx. Carathéodory Thm transforms it into an approximate solution with few glasses, mixed in equal proportions; an independent of n, N.\footnotetext{5}
\end{itemize}
Relevance of cocktail problem

(a) (Portfolio building)

ingredients = stocks
glasses of cocktails = mutual funds
empty glass = portfolio

Problem: create a new mutual fund with a
given combination of stocks
by combining the mutual funds that are available
on the market.

Solution: as above - a fast randomized algorithm builds
a portfolio with few mutual funds.

(6) (Factor analysis)

$z_1 \ldots z_N$ = a dictionary of factors
that need to explain z = behavior (consumer, animal, etc)

Sol: behavior is explained by few factors.

$z = \Sigma \lambda_i z_i \Rightarrow$ factor 1 explains $\lambda_i \%$ of behavior

\Rightarrow A PARSIMONIOUS MODEL.