LECTURE 23

LD Paradigm: High-dimensional dato has low-dimensional structure.
This allows us to visualize, think about data, world; lift the carse of high dimensionality.

Ex. Human decisions are based on ~5-10 values

- Human faces have ~5-10 features we recognize.

LD:

Now do we find, parametrize M?
How does ow brain do it (in vision, thinking)?
Now do we know it is true? From the eigenvalues of $\Sigma=\operatorname{Cov}(x)=\mathbb{E X} X$?

- If data $X \in \mu \leftarrow$ linear subspace of dimension $r<n$ then \sum has $\leq r$ nonzero eigenvalues:
\downarrow

- If data X lies dose to M, the digs drop at r (but not exactly to 0)
$r=$ "effective rank" of Σ
"effective dimension" of the data.
(Q) Mathematically, how to define the "effective rank" of Σ, $=$ "effective dimension" of data?

Ans Find r that splits the area into two equal halves: Rigorously:

Def The effective rank of a PSD matrix Σ is

$$
r(\Sigma):=\min \left\{r: \sum_{i \leq r} \lambda_{i} \geqslant \sum_{i>r} \lambda_{i}\right\}
$$

$=$ effective dimension of x if $\Sigma=\operatorname{Cov}(x)$ Explains 50% of the variation of the data

Ex (Eigenfaces) Data $X \sim$ Unit $\{$ images of human faces $\}$

$$
X_{i} \in \mathbb{R}^{50,000=d}
$$

$\sum_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}$
$n=2000$

eigenface 4

eigenface 8

6 facial features explain 50% of variability

- LD Paradigm \Rightarrow in all ML results, the dimension d of the data can be replaced by the effective dimension $r(\leftarrow d)$
- Example: Covariance estimation $\Rightarrow P C A$. we proved: a sample of size $n=O(d)$ suffices (eec...) We will prove: $n=O(r)$ suffices:

THM Let X be $a^{\text {mean zero }}$ random vector in \mathbb{R}^{d} such that

$$
\|x\|_{2}^{2} \leq 10 \mathbb{E}\|x\|_{2}^{2} \text { ass. }
$$

If $n \geqslant C r \log d$ then

sample covariance; $X_{i}=$ rid copies of X

Toward the proof:

$$
\begin{aligned}
& \text { Lem } \mathbb{E}\|\times\|_{2}^{2} \leq 2 r\|\Sigma\| \\
& L \| \text { cynic property of trace } \\
& \square \mathbb{E} x^{\top} x=\mathbb{E} \operatorname{tr}\left(\frac{x^{\top} x}{4}\right) \stackrel{\boxed{E}}{=} \operatorname{tr}\left(x x^{\top}\right)=\operatorname{tr} \mathbb{E}\left[x x^{\top}\right]=\operatorname{tr}(\Sigma) \\
& =\sum_{i=1}^{d} r^{\text {ergs of } \Sigma}{ }^{1 \times 1 \text { matrix }} \quad \text { linearity } \\
& =\sum_{i=1}^{d} \lambda_{i}^{k} \rightleftharpoons \underbrace{\sum_{i \leq r}^{\lambda_{i}}}+\underbrace{\sum_{i>r} \lambda_{i}} \leq 2 \sum_{i \leq r} \underbrace{\lambda_{i}}_{\lambda_{i}}=\|\Sigma\| 2 r\|\Sigma\| \text {. } \\
& \text { set of } r
\end{aligned}
$$

To prove Thu, use matrix Bernstein inequality (last class):
\forall independent mean zero $d \times d$ symmetric random matrices Z_{i} that satisfy $\left\|z_{i}\right\| \leq 1$ a.s, we have

$$
\left\|\sum_{i=1}^{n} Z_{i}\right\| \leq C \sigma \sqrt{\log d}+C K \log d \text { with prob } \geqslant 0.99
$$

where $\sigma^{2}=\left\|\sum_{i=1}^{n} \mathbb{E} z_{i}^{2}\right\|$.

Proof of Thu

$$
\left\|\sum_{n}-\sum\right\|=\|\frac{1}{n} \sum_{i=1}^{n} \underbrace{\left(x_{i} x_{i}^{\top}-\Sigma\right)}_{\begin{array}{c}
\text { id mean } \\
\text { random matrices }
\end{array}}\| \text { use matrix Bernstein inequality: }
$$

$$
\begin{equation*}
\underset{\uparrow}{\lesssim} \frac{1}{n}(\sigma \sqrt{\log d}+K \log d) \text { if }\left\|x_{i} x_{i}^{\top}-\Sigma\right\| \leq K \text { ass., where } \tag{x}
\end{equation*}
$$

hides an absolute constant factor

$$
\begin{aligned}
& \sigma^{2}=\left\|\sum_{i=1}^{n} \overparen{\mathbb{E}\left(X_{i} X_{i}^{\top}-\Sigma\right)^{2}}\right\|=n\left\|\mathbb{E}\left(X X^{\top}-\Sigma\right)^{2}\right\| \\
& 0 \preccurlyeq \mathbb{E}\left(x x^{\top}-\Sigma\right)^{2}=\mathbb{E}\left(x x^{\top}\right)^{2}-\underbrace{\mathbb{E}\left(x x^{\top}\right)}_{\sum^{11}} \Sigma-\Sigma \underbrace{\mathbb{E}\left[x x^{\top}\right)}_{\sum_{\Sigma}^{11}}+\Sigma^{2} \\
& =\mathbb{E} x \underbrace{x x^{\top} x x^{\top}}_{\|}-\sum_{K_{K}^{2}}^{2} \preccurlyeq 2 \operatorname{or}\|\Sigma\| \cdot \underbrace{\sum_{x^{\top}}^{\prime}}_{\sum_{\Sigma}^{\prime \prime}}=\operatorname{or}\|\Sigma\| \Sigma \\
& \|x\|_{2}^{2} \underset{\uparrow}{ } 10 \mathbb{E}\|x\|_{2}^{2} \underset{\uparrow}{ } 20 r\|\Sigma\|
\end{aligned}
$$

assumption lemma

$$
\begin{array}{ll}
0 \leqslant n \mathbb{E}\left(X X^{\top}-\Sigma\right)^{2} \leqslant 20 \operatorname{assumption}\|\Sigma\| \Sigma \text { lemma } & \text { since } \\
\Rightarrow \sigma^{2}=\|\cdots\| \leqslant 20 r n\|\Sigma\|^{2} & (0 \leqslant A \leqslant B \Rightarrow\|A\| \leqslant\|B\|)
\end{array}
$$

(K): $\left\|X X^{+}-\Sigma\right\| \sum_{\text {inequality }}^{\wedge} \underbrace{\left\|X X^{\top}\right\|}_{\| n w{ }^{2}}+\|\Sigma\| \leq 21 r\|\Sigma\|$
inequality $\|x\|_{2}^{2} \leqslant 2$ rr $\|\Sigma\|$, as above
Substitute σ^{2}, K into $(*) \Rightarrow$

$$
\begin{aligned}
& \text { Substitute } \sigma^{2}, K \text { into }(*) \Rightarrow \\
& \left\|\Sigma_{n}-\Sigma\right\| \leqslant \frac{1}{n}\left(\sqrt{r n\|\Sigma\|^{2} \log d}+r\|\Sigma\| \log d\right)=\underbrace{\left.\sqrt{\frac{r \log d}{n}}+\frac{r \log d}{n}\right)}_{0,01 \text { if } n>C \text { log. }}\|\Sigma\| \\
& \text { REMARKS 1. Logarithmic oversampling }
\end{aligned}
$$ is needed in general

(HF)
2. No distribution assumptions on X !

