LECTURE 24

Machine Learning

- What is learning, understanding, attention, experience?
 Kow do we make technology achieve that?
 Math. models? Based on h.d. probability.
- OUnsupervised learning from own experience (infant). Supervised from a teacher. Examples we have seen before:

 $\neg |$ -

Supervised ML: a general framework
• A pair of random veriables lor vectors)
$$(X, Y) \in X \times Y$$
.
EX. $(X,Y) \in \mathbb{R}^d \times \{q_1\}$ as above. Objective reality.
Suppose converting X, Y are correlated, ideally strongly.
• The joint distribution of (X,Y) is unknown. We only see:
• Training data $(X_1, Y_1), ..., (X_n, Y_n)$: iid copies of (X,Y) .
• Good: predict Y from X as best as we can.
=> We want to construct an oracle
 $h: X \to Y$: $h(X) \simeq Y$ (X)
to make predictions for new, unseen data: $h(X_{n+1}) = Y_{n+1}$
import output
(2) Kow do we quantify the "goodness of BH" (X)?
• Ne fixe loss function $l: Y \in Y \to \mathbb{R}$, eg. $l(t+s)=(t+s)^2$, and
define the MSE (a.k.a. test error -1)
 $R(h):= E l(h(X), Y) = E (h(X_{n+1}), Y_{n+1})$
Examples:
(a) quadrate loss $l(t,s) = (t-s)^2 \Rightarrow R(h) = E (h(X)-Y)^2$
(b) legistic loss $\rightarrow \frac{1}{4}$
(c) hinge loss (iven)

-2-

Now do we construct an oracle h?

OUR STRATEGY :

1. Fix some <u>collection</u> of hunchions H, called a hypothesis class. 2. Select hEH that best Bits the training data.

-3-

• The best
$$h \in \mathcal{H}$$
 is the one that minimizes the risk
 $R(h) = \mathbb{E}l(h(x), Y).$
 $h^* := \operatorname{argmin}_{h \in \mathcal{H}} R(h).$

But R(h) can't be computed (can't take E over the population)
 empirical risk (a.k.a. training estor)
 R_n(h):= 1 × l(h(xi), Ti), h^{*} = argmax R_n(h)
 h × H
 Can be computed from training data I (can be NP hard)

$$\frac{E_X(Binarly dassification)}{R_n(h)} = \frac{1}{n} \frac{\tilde{z}}{\tilde{z}_{n+1}} \frac{(h(x_i) - \gamma_i)^2}{(h(x_i) - \gamma_i)^2} = \% \text{ of misclassified training data.}$$

$$\lim_{\substack{i = 1 \\ i =$$

-4 -

How do we measure the quality?

•	Generalization error := R(h,*)
	measures how well the algorithm generalizes to unseen data.
•	Examples:
	(a) $\mathcal{H} = \{all \ functions \}, \ Y = f(x).$
	I a perfect bit to the training data: $h_n^*(z) \coloneqq \begin{cases} Y_i & \text{if } z = X_i \\ 0 & \text{elsewhere.} \end{cases}$
	training error $R_n(h_n^*) = 0$ (Overfitting)
	BUT does NOT generalize well:
	R(h_n) is large. Memorizes, not generalizes.
	(b) It = {all linear functions }, quadratic loss =>
	$W_{n}^{*} = \arg \min_{\substack{\omega \in \mathbb{R}^{d}, \ \beta \in \mathbb{R}}} \frac{1}{n} \sum_{i=1}^{n} \left(\langle w, x_{i} \rangle + \beta - Y_{i} \rangle^{2} \qquad \qquad$
	= linear regression. OK.
	×
	Our goal : bound the generalization error.
	Kow does it depend on the complexity of # ?