SUMMARY of math framework of ML (last class)

- \(P \): an unknown distribution on \(X \times Y \);
- We see training data: \((x_1, y_1), \ldots, (x_n, y_n) \sim P \) iid.
 \[\text{Goal: oracle } h: X \to Y: \quad h(x) = y \]
- Choose a hypothesis class \(\mathcal{H} \) (functions \(X \to Y \))
- \(\text{Vapnik, Risk, a.k.a. "test error"} \)
 \[R(h) := \mathbb{E}[L(h(x), y)] \]
 \[h^* := \text{argmin}_{h \in \mathcal{H}} R(h). \quad \text{Not computable} \]
- Empirical risk a.k.a. training error
 \[R_n(h) := \frac{1}{n} \sum_{i=1}^{n} L(h(x_i), y_i). \quad h_n^* := \text{argmin}_{h \in \mathcal{H}} R_n(h). \quad \text{Computable} \]

ERM algorithm:

1. Training: for input data \((x_1, y_1), \ldots, (x_n, y_n)\); compute \(h_n^* \).
2. Prediction: on query \(X \), output \(h_n^*(x) \) “oracle”

\[
\text{Generalization error} \\
R(h^*) \leq R_n(h^*) + 2 \sup_{h \in \mathcal{H}} \left| R_n(h) - R(h) \right|
\]
- test error of ERM
- best possible error (with no data)
 for a given class \(\mathcal{H} \)

Proof

\[
R(h_n^*) \leq R_n(h_n^*) + \varepsilon \quad (h_n^* \in \mathcal{H}) \\
\leq R_n(h^*) + \varepsilon \quad (h^* = \text{minimizer of } R_n) \\
\leq R(h^*) + 2\varepsilon \quad (h^* \in \mathcal{H}) \quad \square
\]

Next time, add a lemma:

if \(\|f-g\|_{\infty} < \varepsilon \) and \(x^*, y^* \) are minimizers of \(f, g \),
then
\[|f(x^*) - g(y^*)| < 2\varepsilon \]
Then apply this lemma
for \(f = R_n, g = R, h_n^*, h^* \).
\[E = \sup_{h \in H} \left| \frac{1}{n} \sum_{i=1}^{n} Z_i(h) - E Z(h) \right| \]
where \(Z_i(h) = \ell(h(x_i), y_i) \) are iid r.v.s.

"empirical process" \[\overline{Z}_i(h) \]

- For binary classification, \(\ell(\cdot, \cdot) \in \{0,1\} \Rightarrow |Z_i(h)| \leq 1

\[P \left\{ \left| \frac{1}{n} \sum_{i=1}^{n} Z_i(h) \right| > t \right\} = P \left\{ \left| \frac{1}{n} \sum_{i=1}^{n} Z_i(h) \right| > tn \right\} \leq 2 \exp \left(-\frac{t^2 n}{2} \right) \]

multiply both sides by \(\frac{1}{n} \) to scale like in CLT

General Hoeffding inequality (Lec.5)

- Union Bound:

\[P \left\{ \sup_{h \in H} \left| \frac{1}{n} \sum_{i=1}^{n} Z_i(h) \right| > t \right\} \leq \sum_{h \in H} P \left\{ \left| \frac{1}{n} \sum_{i=1}^{n} Z_i(h) \right| > t \right\} \]

\[\leq |H| \exp \left(-\frac{t^2 n}{2} \right) = 2 \exp \left(\log |H| - \frac{t^2 n}{2} \right) \]

\[\Rightarrow \text{We proved:} \]

\[t = C \sqrt{\frac{\log |H|}{n}} \]

THM (Generalization bound) If the hypothesis class \(H \) is finite, \(R(h_n^*) \leq R(h^*) + C \sqrt{\frac{\log |H|}{n}} \) with prob. \(\geq 0.99 \).

- Good: logarithmic in \(|H| \)
- Bad: most hypothesis classes are infinite.

Can \(\log |H| \) be replaced by some "complexity" of \(H \)?

Yes: VC dimension.

Hence the ERM algorithm generalizes well from \(n \sim \log |H| \) training data points.
VC DIMENSION

- Heuristically: \(\text{vc}(\mathcal{H}) = \text{largest } \#(\text{data } \mathcal{H} \text{ overfits}) \)

\[\text{i.e functions } h : X \rightarrow \{0, 1\} \]

Def Let \(\mathcal{H} \) be any collection of Boolean functions on a set \(X \). We say that \(\mathcal{H} \) overfits, or "shatters" a subset \(\{x_1, \ldots, x_d\} \subset X \) if \(\forall \) labels \(y_1, \ldots, y_d \in \{0, 1\} \) \(\exists h \in \mathcal{H} \) such that

\[h(x_i) = y_i \quad \forall i = 1, \ldots, d. \]

The \textit{VC dimension} of \(\mathcal{H} \), denoted \(\text{vc}(\mathcal{H}) \), is the maximal size of a subset \(\mathcal{H} \) shatters.

Examples

1. \(\mathcal{H} = \{1\} \) has \(\text{vc}(\mathcal{H}) = 0 \): it can't shatter even one point \(x_i \) since \(h(x_i) = 1 \).

2. Half-lines \(\mathcal{H} = \{1_{(-\infty, a]} : a \in \mathbb{R}\} \)

 \[\text{vc}(\mathcal{H}) = 1 \]

Prof.

\(\mathcal{H} \) can shatter some 1-point set \(\{x_1\} \), but can't shatter any 2-point set \(\{x_1, x_2\} \)

\[x_1 \quad \{0, 1\} \quad x_2 \]

HW: \(\{1_{(-\infty, a]} : a \in (b, +\infty)\} \)

3. Intervals: \(\mathcal{H} = \{1_{[a, b]} : a \leq b\} \)

 \[\text{vc}(\mathcal{H}) = 2 \]

Prof.

\(\mathcal{H} \) can shatter some 2-pt set \(\{x_1, x_2\} \), but can't shatter any 3-point set \(\{x_1, x_2, x_3\} \)

\[x_1 \quad x_2 \quad x_3 \]
4. Half-planes in \(\mathbb{R}^2 \):

\[\mathcal{H} = \left\{ \mathbf{1} a_1 x_1 + a_2 x_2 + b \right\} : \ a_1, a_2, b \in \mathbb{R} \right\} \]

\[\text{VC} (\mathcal{H}) = 3 \]

If can shatter some 3-pt set \(\{x_1, x_2, x_3\} \),

but can't shatter any 4-point set \(\{x_1, x_2, x_3, x_4\} \):

If 4-point set is like this, or like this:

"Convex position" "non-convex position"

In either case, \(\exists \) label assignment that is impossible to realize.