LECTURE 26
Examples continued:
5. Circles in \mathbb{R}^{2} :

$$
\mathcal{H C}=\left\{\mathbb{1}\left\{\left(x(1)-a_{1}\right)^{2}+\left(x(2)-a_{2}\right)^{2} \leq r^{2}\right\}: a_{1}, a_{2}, r \in \mathbb{R}\right\}
$$

6. Axis-aligned rectangles in \mathbb{R}^{2} :

$$
\begin{aligned}
& \mathcal{H}=\left\{\mathbb{1}_{(a, b] \times[c, d]}: a<b, c<d\right\} \\
& \operatorname{vc}(f l)=4
\end{aligned}
$$

Generalizing Example 4 from last cars:
7. Half-spaces in \mathbb{R}^{d} :

$$
\begin{array}{ll}
\mathcal{H}=\left\{\mathbb{1}_{\{\langle w, x\rangle+b>0\}}: w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\} \\
& v_{c}(\mathbb{K})=d+1
\end{array}
$$

More generally:
8. Polynomial surfaces in $\mathbb{R}^{d}: \quad \mathcal{H}=\left\{\mathbb{1}_{\{p(x) \geqslant 0\}}: \operatorname{deg}(p) \leq r\right\}$ $\operatorname{VC}(\mathbb{K})=\binom{d+r}{r} \quad$ [Anthony 1995]
"Polynomial classifier"

Remark, In all examples above, $v(H)=$ \# parameters that describe a function in fe.

- This is not true in general. For rectangles in R^{2} that are not necessarily axis-aligned as in Ex.5,

$$
v c(f e)=7
$$

while the \# parameters is 5 :

$$
a, b, c, d, \theta
$$

- But heuristically, and "approximately", this is often true:

8. $H=\{$ functions a given neural network can compute\},
 if activation function $=$ \square
then

- networks for which the bound is tight [Maas 94]
- If activation function is piecewise linear (e.g. Rel), then $V C(H) \leq C W L \log \omega \quad$ [Bartlett-Harvey-Liaw-Mehrabian 2017] \#layers and \exists examples showing tightness.

Lem[Pajor 85] \forall finite class of Boolean functions $t h$ on X,

$$
|f l| \leq \#(\text { subsets of } x \text { shattered by fe })
$$

Convention: ϕ is shattered by \forall nonempty \mathcal{H}.
Proof Wlog., $x=\{1, \ldots, n\}$. Denote by th (fe) the family of all subsets of x shattered g He. To prove

$$
|f e| \leq|\operatorname{sh}(f e)|
$$

- partition H according to the value at point n, i.e.

$$
H=H_{0} \perp H_{1}
$$

where $H_{0}=\{h \in \mathcal{H}: h(n)=0\}$ and $\mathcal{H}_{1}=\{h \in \mathcal{H :} h(n)=1\}$.

- \forall subset $\left\{i_{1}, \ldots, i_{d}\right\} \subset X$ shattered by H_{0} or \mathcal{H}_{1} is also shattered by fl. Thus (subdasses of $t l$)

$$
\begin{array}{r}
|\operatorname{sh}(H)| \geqslant\left|\operatorname{sh}\left(H_{0}\right)\right|+\left|\operatorname{sh}\left(H_{1}\right)\right| \\
\uparrow \tag{*}\\
\text { domain }=\{1, \ldots, n-1\}
\end{array}
$$

- Iterate: partition Ho and H1 according to the value $h(n-1)$
(2) $\left|\operatorname{sh}\left(\mathcal{H}_{00}\right)\right|+\left|\operatorname{sh}\left(\mathcal{K e}_{01}\right)\right|+\left|\operatorname{sh}\left(\mathcal{H}_{10}\right)\right|+\left|\operatorname{sh}\left(\mathcal{H}_{11}\right)\right|$
…down to single-point classes, each of which shatters one set $\phi \cdots \geqslant|\mathrm{Jl}|$
-MISTAKE: we double counted in (*)
the sets that are shattered
by both Ho and H,

FIX: suppose $\left\{i_{1}, \ldots, i_{d}\right\}$ is shattered by both H_{0} and $H_{1} \Rightarrow$
\forall label assignment $y_{1}, \ldots, y_{d} \in\{0,1\}$

$$
\begin{array}{ll}
\exists h \in H_{0}: & h\left(i_{1}\right)=y_{i_{1}}, \cdots, h\left(i_{d}\right)=y_{i_{d}}, \\
\exists g(n)=0 \\
\exists H_{1}: & g\left(i_{1}\right)=y_{i}, \ldots, g\left(i_{d}\right)=y_{i_{d}},
\end{array} \quad g(n)=1
$$

$\Rightarrow \underbrace{\left\{i_{1}, \ldots, i_{d}, n\right\}}_{\pi}$ is shattered by $H=H_{0} \cup H_{1} \quad\binom{$ choose either $h}{$ arg }
This set is NOT shattered by either flo or $H_{1} \rightarrow$ it was NOT counted before

- $\Rightarrow \forall$ set that we double counted, we find a set we never counted
$\Rightarrow(*)$ is true. Proceed as before. QED
- By def of $v c$ dimension, \forall subset shattered by H has cardinality $\leq v c(H)=$: So Pajor's lemma yield, \mid fe $\left\lvert\, \leq \#($ subsets of $\{1, \ldots, n\}$ with card. $\leq d) \leq \sum_{k=0}^{d}\binom{n}{k}\right.$.

Cor (Sauer-Sheloh lemma) let th be a class of Boolean functions on an n-point domain. Then

$$
|f l| \leq \sum_{k=0}^{d}\binom{n}{k} \quad \text { where } \quad d=v c(f e)
$$

Examples (skip?)
(a) Integer intervals: $\left.H=\left\{\begin{array}{lll}0 & 0 & 0 \\ 1 & 2 & a\end{array}\right], i, i l l: 1 \leq a \leq b \leq n\right\}$ $V C(f l)=2$ (as in the previous lecture for real intervals) $|f l|=1+n+\binom{n}{2}=\sum_{k=0}^{2}\binom{n}{k} \Rightarrow$ Pajor lemma is sharp zero function ${ }_{a=b}{ }_{\text {\# pairs }(a<b)}$
(b) $\mathcal{H}=\left\{\right.$ all functions on an n-point domain supported $b_{y} \leq d$ pts $\}$ $V C(H)=d \quad(H W ?)$ and $|\mathcal{H}|=\sum_{k=0}^{d}\binom{n}{k} \Rightarrow$ sharp again!

Remarks (1) $\sum_{k=1}^{d}\binom{n}{k} \leq\left(\frac{e n}{d}\right)^{d} \quad($ nw 3, Problem 3) $\xrightarrow{\text { Pajor }}$

$$
d_{\lambda, 1} \leq \log |k| \leq d \log \left(\frac{e n}{d}\right) \text {, where } d=v c(k) \text {. }
$$

(2) Heuristically, $\log |\mathcal{H}|=\#$ bits to specify a function in te $d=v c(F) \sim$ \# parameters that describe functions in \&l $\Rightarrow \log \mid f(\asymp d$, is expected.

