LECTURE 3

- Application of Approximate Caratheodory Theorem for,

COVERING NUMBERS
Def The covering number of a set $T \subset \mathbb{R}^{n}$ at scale $\varepsilon>0$ is the smallest number of Euclidean balls of radius ε needed to cover T. Denoted $N(T, \varepsilon)$.
$\underline{\underline{E}}$

$$
N(T, \varepsilon) \leq 6
$$

- Covering numbers is a measure of complexity of T (like area, $\begin{gathered}\text { volume }\end{gathered}$
- Suffer from the curse of high dimensionality:

Prop For $B=$ unit Euclidean ball in \mathbb{R}^{n},

$$
N(B, \varepsilon) \geqslant\left(\frac{1}{\varepsilon}\right)^{n} \quad \forall \varepsilon>0
$$

Exponential in dimension:

Proof Assume B can be covered by N copies a ball of radius ε, which we denote εB. Comparing the volumes gives

$$
\begin{aligned}
& \operatorname{Vol}(B) \leq N \cdot \underbrace{\operatorname{Vol}(\varepsilon B)}_{" \varepsilon^{n} \cdot \operatorname{Vol}(B)} \\
& \Rightarrow N \geqslant \frac{1}{\varepsilon^{n}} \quad \text { QED. }
\end{aligned}
$$

- Generally, covering \#s are exponential in the dimension. (egg .for cube) But not always:

Polytopes with feer vertices have small covering numbers - ঠаzатограниики"

THM let P be a polytope in \mathbb{R}^{n} with m vertices, $P \subset B$.
Then
$N(p, \varepsilon) \leq m^{1 / \varepsilon^{2}}$
$\forall \varepsilon>0$. unit Euclidean ball

Dimension-free. Polynomial in \#rertices
Proof is based on a version of Approximate Caratheodory Tum (HW2):
(*)
\forall set $T \subset B, \forall x \in \operatorname{conv}(T) \quad \forall k \in \mathbb{N} \quad \exists x_{1}, \ldots, x_{k} \in T$:

$$
\left\|x-\frac{1}{k} \sum_{i=1}^{k} x_{i}\right\|_{2} \leq \frac{1}{\sqrt{k}} .
$$

Proof of THM:

- $P \subset \operatorname{conv}(T)$ where $T=\{v e r t i c e s ~ o f ~ P\}<B$.
- A.C.T (*) \Rightarrow
$\forall x \in P<\operatorname{conv}(T)$ is within distance $\frac{1}{\sqrt{k}}$

from some point in the set

$$
\mathcal{N}:=\left\{\frac{1}{k} \sum_{i=1}^{k} x_{i}: \quad: x_{i} \in T\right\}
$$

$\Rightarrow \forall x \in P$ is covered b a ball of radius $\frac{1}{\sqrt{k}}$ and center $\in \mathbb{N}$.

$$
\Rightarrow N\left(P, \frac{1}{\sqrt{k}}\right) \leq|\mathcal{N}| \leq m^{k}
$$

$\left\{\right.$ \#ways to choose k elements x_{i} from the set T of m elements, with repetition

- Choose $k: \frac{1}{\sqrt{k}}=\varepsilon \quad\left(k=\frac{1}{\varepsilon^{2}}\right) \Rightarrow$ QED

Application: polytopes with few vertices have exponentially small volume:

TUM [Carl-Pajor'88]
Let $P \subset B$ polytope with m vertices unit Euclidean ball.
Then

$$
\frac{\operatorname{Vol}(P)}{\operatorname{Vol}(B)} \leq\left(3 \sqrt{\frac{\log m}{n}}\right)^{n}
$$

$c \leq 2^{-n}$ if $m<\exp (c n)$
Proof By def. of covering numbers, P can be covered by $N(P, \varepsilon)$ copies of a ball of radius ε, denoted εB. Comparing the volumes yields

$$
\begin{aligned}
& \operatorname{Vol}(P) \leq \underbrace{N(P, \varepsilon)}_{\uparrow} \cdot \operatorname{Vol}(\varepsilon B) \\
& \text { 3, we have } N(P, \varepsilon) \leq m^{1 / \varepsilon^{2}}
\end{aligned}
$$

- By (*)p.3, we have $N(P, \varepsilon) \leq m^{1 / \varepsilon^{2}}$
- By volume scaling, $\operatorname{Vol}(\varepsilon B)=\varepsilon^{n} \cdot \operatorname{Vol}(B)$.

Substitute \Rightarrow

$$
\frac{\operatorname{Vol}(P)}{\operatorname{Vol}(B)} \leq m^{1 / \varepsilon^{2}} \cdot \varepsilon^{n} \quad \forall \varepsilon>0 .
$$

- Minimize RHS in $\varepsilon \Rightarrow$ QED. $\quad\binom{$ DMC: take $\log s \notin$ differentiate }{\Rightarrow optimal $\varepsilon=\sqrt{\frac{2 \log m}{n}}}$

Remarks
(1) [Carl-Pajor] proved a slightly sharper bound $\left(C \sqrt{\frac{\log (m / n)}{n}}\right)^{n}$.
(2) It is optimal, attained by a candom poly tope $p=\operatorname{conv}\left\{x_{1}, \ldots, x_{m}\right\}$
where $x_{i}=$ indep. random pts on the unit sphere [Datnis-Giannopoulos-Tsolomitis'2003, 2009]
(3) "Hyperbolic intuition"
for $\delta:=\sqrt{\frac{4 \log m}{n}}$, Thu says: ting ball!

$$
\operatorname{Vol}(P) \leq \delta^{n} \operatorname{Vol}(B)=\operatorname{Vol}(\delta B) .
$$

Thus the picture "actually" looks like this, even though it violates convexity.
V.Milman's "hyperbolic intuition"

(4) A "blind spider" experiment:

- A random walk will stay in the "core" δB, will not find the "tentacles".
- The spider can't tell the polytgpe from the ball δB.
- Bad for algorithms (MCMC)

