LECTURE 4
Concentration inequalities.

- " $X \approx \mathbb{E} X$ with high probability
closer to 1 than you think.
- Ex: normal distribution. $\quad X \sim N\left(\mu, \sigma^{2}\right)$ satisfies
$|x-\mu| \leq 3 \sigma$ with prob. 0.9973 (see 68-95-99.7 rule)
A general tail bound:

Prop (Gaussian tails) $g \sim N(0,1)$ satisfies

$$
P\{g \geqslant t\} \leq \frac{1}{t \sqrt{2 \pi}} e^{-t^{2} / 2} \quad \forall t \geqslant 0
$$

Proof (Recall: $\mathbb{P}\{x \in A\}=\int_{A} P(x) d x$

$$
P\{g \geqslant t\}=\int_{t}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \text {. Not computable analytically. }
$$

To estimate, change variables $x=t+y \Rightarrow \frac{x^{2}}{2}=\frac{t^{2}}{2}+t y+\frac{y^{2}}{2}$

$$
\begin{aligned}
\mathbb{P}\{g \geq t\} & =\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} \underbrace{-t y} \underbrace{e^{-y^{2} / 2}}_{1} d y \\
& \leq \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} \underbrace{\int_{0}^{\infty} e^{-t y} d y}_{11 / t} ; \\
& -1
\end{aligned}
$$

- By symmetry,

$$
\begin{equation*}
\mathbb{P}\{|g| \geqslant t\}=2 \cdot \mathbb{P}\{g \geqslant t\} \leq \frac{1}{t} \sqrt{\frac{2}{\pi}} e^{-t^{2} / 2} \tag{*}
\end{equation*}
$$

- More generally, if $X \sim N\left(\mu, \sigma^{2}\right) \Rightarrow X=\mu+\sigma g$

$$
\Rightarrow \mathbb{P}\{|x-\mu| \geqslant t \sigma\}=\mathbb{P}\{|g| \geqslant t\} \leq e^{-t^{2} / 2} \quad \forall t \geqslant 1 .
$$

- Ex: $t=3: \mathbb{P}\{|x-\mu| \leqslant 3 \sigma\} \geqslant 1-\frac{1}{3} \sqrt{\frac{2}{\pi}} e^{-3^{2} / 2} \geqslant 0.9970$ almost as good as the exact numiler 0.9973 on p. $3: \%$
- Remark: a simpler form of (*) often suffices. Since $\sqrt{2 / \pi} \leq 1$, we have:

$$
\mathbb{P}\{|g| \geqslant t\} \leq e^{-t^{2} / 2} \quad \forall t \geqslant 1
$$

"Gaussian tail bound"

- For general distributions?
- Prop (Markov's inequality) \forall non-negative riv. X ,

$$
\mathbb{P}\{x \geqslant t\} \leq \frac{\mathbb{E} x}{t} \quad \forall t>0 .
$$

Proof $\forall x \in \mathbb{R}$ can be decomposed as

$$
\begin{aligned}
& \text { be decomposed as } \\
& x=x \cdot \mathbb{1}_{\{x>t\}}+x \cdot \mathbb{1}_{\{x<t\}}
\end{aligned}\binom{\mathbb{1}_{A} \text { is the indicator }}{\mathbb{1}_{A}=\left\{\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \text { A occurs }}
$$

Apply this for X and take expectations on both sides:

$$
\begin{aligned}
\mathbb{E} X & =\mathbb{E}[\underbrace{x \mathbb{1}_{\{x t\}}}_{t \mathbb{1}_{\{x \geq t\}}^{\prime \prime}}]+\underbrace{\mathbb{E}\left[x \mathbb{1}_{\{x<t\}}\right]}_{v_{0}^{\prime}} \\
& \geq t \mathbb{E} \mathbb{1}_{\{x \geq t\}}=t \cdot \mathbb{P}\{x \geq t\} .
\end{aligned}
$$

Divide forth sides by $t \Rightarrow$ QED.

- PMP (Chebyshev's inequality) $\forall r . v . X$ with mean μ, variance σ^{2} :

$$
\mathbb{P}\{|x-\mu| \geqslant t\} \leq \frac{\sigma^{2}}{t^{2}} \quad \forall t>0
$$

Proof $\mathbb{P}\{|x-\mu| \geqslant t\}=\mathbb{R}\left\{(x-\mu)^{2} \geqslant t^{2}\right\} \leqslant \frac{\mathbb{E}(x-\mu)^{2}}{t^{2}}\binom{$ Markov for }{$(x-\mu)^{2}}$

$$
=\sigma^{2} / t^{2} . \quad Q E_{D}^{t}
$$

- QUESTION Toss a fair coin N fines. $P\left\{\right.$ at least $\frac{3}{4} \mathrm{~N}$ heads $\}=$?
- Solution 1, based on Chebysher :
symmetric puff

$$
S_{N}=\text { \#heads } \sim \operatorname{Binom}\left(N, \frac{1}{2}\right)
$$ about $N / 2$

$$
\mathbb{E} S_{N}=\frac{N}{2}, \quad \operatorname{Var}\left(S_{N}\right)=\frac{N}{4}
$$

Chebyshev \Rightarrow

$$
\begin{aligned}
& \text { ChebysheN } \Rightarrow \\
& \mathbb{P}\left\{S_{N} \geq \frac{3}{4} N\right\}_{\substack{ \\
\text { symmetry }}}^{=\frac{1}{2} \mathbb{P}\left\{\left|S_{N}-\frac{N}{2}\right| \geq \frac{N}{4}\right\} \leq \frac{1}{2} \cdot \frac{N / 4}{(N / 4)^{2}}=\frac{2}{N}=0.025 \quad \text { if } N=80}
\end{aligned}
$$

- Solution 2, based on CLT:

$$
\begin{aligned}
& \frac{S_{N}-\mathbb{E} S_{N}}{\sqrt{\operatorname{Var}\left(S_{N}\right)}} \rightarrow N(0,1) \text { as } N \rightarrow \infty \\
\Rightarrow & \mathbb{P}\left\{S_{N} \geqslant \frac{3}{4} N\right\}
\end{aligned}=\mathbb{P}\left\{\frac{S_{N}-N / 2}{\sqrt{N / 4}} \geqslant \sqrt{\frac{N}{4}}\right\},
$$

$$
\approx \mathbb{P}\left\{g \geqslant \sqrt{\frac{N}{4}}\right\} \quad \text { where } g \sim N(0,1)
$$

$$
\leq e^{-t^{2} / 2}=e^{-N / 8} \quad \text { Gaussian tail, p.2) }
$$

$$
\approx 0,000045 \text { if } N=80
$$

MUCK BETTER!

- But Sol. 2 has a gap : the error term in CLT. What is it?

Quantitative celt:
Thy (Berry-Esseen) Let X_{i} be iidrv's with mean 0 , var. 1,

$$
\Rightarrow\left|\mathbb{P}\left\{\frac{1}{\sqrt{N}} \sum_{i=1}^{N} x_{i} \geqslant t\right\}-\mathbb{P}\{g \geqslant t\}\right| \leq \frac{\rho}{\sqrt{N}}
$$

where $g \sim N(0,1)$ and $\rho=\mathbb{E}\left|x_{1}\right|^{3}$.

- THAT'S SAD \because : taking his error into account in Sol. 2 yields probability

$$
\frac{1}{\sqrt{N}}+e^{-N / 8}
$$

ヘ sIG $^{\text {a }}$
Not better than Sol. 1 Based on Chebysher.

- Can we improve $\frac{1}{\sqrt{N}}$ in CLT?

NO: $\mathbb{P}\left\{\right.$ exactly $\frac{N}{2}$ heads $\}=\mathbb{P}\left\{S_{N}=\frac{N}{2}\right\}=2^{-N}\binom{N}{N / 2} \simeq \frac{1}{\sqrt{N}}$ white $p\{g=0\}=0 \leftarrow \mathbb{H}$ error $\frac{1}{\sqrt{N}}$ is unavoidable.

WHAT SHOULD WE DO?

