$$\frac{LECTURE 4}{C_{ONCENTRATION} INEQUALITIES.}$$
• " X = EX with high probability"
described the probability"
Ex; normal distribution. X~N(μ,σ^2) satisfies
 $|x-\mu| \leq 3\sigma$ with prob. 0.9973
(see (1-95-997 rule)
A general tail bound:
 3σ 3σ
Prop (Gaussian tails) $g \sim N(0, 1)$ satisfies
 $P[g = t] \leq \frac{1}{t\sqrt{2\pi}} e^{-t^2/2}$ $\forall t \geq 0$
 R decays fast in t.
Prod (Recall: $P[X \in A] = \int p(x) dx$
A density of X)
 $P[g \geq t] = \int_{t}^{t} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dx$. Not computable analytically.
To estimate, change variables $x = t+y \Rightarrow \frac{x^2}{2} = \frac{t^2}{2} + ty + \frac{y^2}{2}$
 $P[g \geq t] = \int_{t}^{t} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} - t^2 e^{-3/2} dy$
 $\leq \frac{1}{\sqrt{2\pi}} e^{-t^2/2} - t^2 e^{-3/2} dy$. QED.
"H (DIV)
 $-1 -$

•

• By symmetry,

$$P\{lgl \ge t\} = 2 \cdot P\{g \ge t\} \le \frac{1}{t} \sqrt{\frac{2}{\pi}} e^{-t\frac{1}{2}}$$
 (*)
• More generally, if $X \sim N(\mu, \sigma^2) \Rightarrow X = \mu + \sigma g$
 $\Rightarrow P\{|X-\mu| \ge t\sigma\} = P\{lgl \ge t\} \le e^{-t\frac{1}{2}}$ $\forall t\ge 1$.
• $E_X: t=s: P\{|X-\mu| \le 3\sigma\} \ge 1 - \frac{1}{3} \sqrt{\frac{2}{\pi}} e^{-\frac{3}{2}} \ge 0.9970$
almost as good as the exact
number 0.9973 on P.3 (*)
• Remark : a simpler form of (*) often suffices.
Since $\sqrt{2/\pi} \le 1$, we have:
 $P\{lgl \ge t\} \le e^{-t^2/2}$ $\forall t\ge 1$
"Gaussian toil bound"

-2-

• For general distributions?
• Pop (Markov's inequality)
$$\forall$$
 non-negative r.v. X i
 $P\{x \ge t\} \le \frac{Ex}{t}$ $\forall t > 0$.
Prof $\forall z \in \mathbb{R}$ can be decomposed as $\begin{pmatrix} 1_A \ is the indicator \\ 1_A = \begin{bmatrix} 1 & t & A \ occurs \end{bmatrix}$
 $x = x \cdot 1_{\{x \ge t\}} + x \cdot 1_{\{x < t\}}$
Apply this for X and take expectations on both sides:
 $EX = E[X \ 1_{\{x \ge t\}}] + E[X \ 1_{\{x < t\}}]$
 $z t E \ 1_{\{x \ge t\}}] = t \cdot P\{x \ge t\}$.
Divide both sizes by $t \Rightarrow QED$
• Prog (Chebyshew's inequality) $\forall r.v. X$ with mean μ , variance σ^2 :
 $P\{|X - \mu| \ge t\} = P\{(X - \mu)^2 \ge t^2\} \le \frac{E(X - \mu)^2}{t^2}$ (Markov for
 $x = \sigma^2/t^2$. QED

-3-

• QUESTION This a fair coin N times.
Plat least
$$\frac{3}{4}$$
 N heads $\frac{3}{2} = 2$
• Solution 1, based on Chebysher:
 $S_N = \pm heads \sim Binom(N, \frac{1}{2})$
 $ES_N = \frac{N}{2}$, $kr(S_N) = \frac{N}{4}$
 $\frac{1}{4} = \frac{1}{2} \frac{3N}{4} = \frac{1}{2} \frac{N}{4} \frac{1}{4} = \frac{1}{2} \frac{N}{4} \frac{1}{4} \frac{1}{2} \frac{N}{4} \frac{1}{4} = \frac{1}{2} \frac{1}{2} \frac{N}{4} \frac{1}{4} \frac{$

QUANTITATIVE CLT:

Then (Berry-Erseen) let
$$X_i$$
 be idervis with mean 0, var. 1,
 $\Rightarrow P\{\frac{1}{\sqrt{N}} \stackrel{\sim}{\underset{i=}{\sum}} x_i \ge t\} - P\{g \ge t\} \{\stackrel{<}{=} \stackrel{P}{\underset{i=}{\sum}}$
where $g \sim N(0,1)$ and $P = E|X_i|^3$.
THAT'S SAD $\stackrel{\sim}{\longrightarrow}$: taking this error into account
in Sol. 2 yields probability
 $\frac{1}{\sqrt{N}} + e^{-N/8}$
Not better than Sol. 1 based on Chebysher. $\stackrel{\sim}{\longrightarrow}$
Can we improve $\frac{1}{\sqrt{N}}$ in CLT ?
 $NO : P\{exactly \stackrel{N}{=} heads = P\{S_N = \stackrel{N}{=} \frac{1}{2} = \frac{2^N}{\binom{N/2}{N/2}} = \stackrel{(1)}{(1)}$
while $P\{g=0\} = O$ $\stackrel{\square}{=} O$ $\stackrel{\square}{=} V$
WHAT SHOULD $w \in DO$?

-5-