LECTURE 6
Previous class: Hoeffoding's inequality:
If X_{1}, \ldots, X_{N} are independent r.v's such that $X_{i} \in\left[a_{i}, b_{i}\right] \quad \forall i$, then $S_{N}=\sum_{i=1}^{N} X_{i}$ satisfies

$$
\mathbb{P}\left\{\left|S_{N}-\mathbb{E} S_{N}\right| \geqslant t\right\} \leq 2 \exp \left(-\frac{2 t^{2}}{\left.\sum_{i=1}^{N\left(b_{i}-a_{i}\right)^{2}}\right) \quad \forall t \geq 0}\right.
$$

- Example: $\quad X_{i} \sim \operatorname{Ber}(p) \Rightarrow a_{i}=0, b_{i}=1 ; \quad \mathbb{E} S_{N}=p N, \quad t:=\delta N$

Hence $S_{N} \sim \operatorname{Binom}(N, P)$ satisfies

$$
\mathbb{R}\left\{\left|S_{N}-P N\right| \geq \delta N\right\} \leqslant 2 \exp \left(-2 \delta^{2} N\right)
$$

exponentially small in N.

Today: am application for:
DISCREPANCY.

- Throw N random points into the square $(0,1)^{2}$ independently and uniformly.
- \forall subset $I<(0,1)^{2}$, expected fraction of pts in $I=\operatorname{area}(I)$.
- Why? $\quad N_{I}:=\#(p t s$ in $I) \sim \operatorname{Binom}\left(N, P_{I}\right)$
$P_{I}=P\{$ a random uniform $p t \in I\}=\operatorname{area}$ (I)

$$
\Rightarrow \mathbb{E} N_{I}=P_{I} N \quad \Rightarrow \quad \mathbb{E}\left[\frac{N_{I}}{N}\right]=P_{I}=\operatorname{area} \text { (I) }
$$

- Application: a probabilistic computation of π :

$$
\frac{N_{I}}{N} \xrightarrow{l l N} E\left[\frac{N_{I}}{N}\right]=\operatorname{area}(I)=\frac{\pi}{4}
$$

$\operatorname{Binom}\left(N, P_{I}\right)$

- Mean squared error: $\mathbb{E}\left(\frac{N_{I}}{N}-P_{I}\right)^{2}=\operatorname{Var}\left(\frac{N_{I}}{N}\right)=\frac{1}{N^{2}} \operatorname{Var}\left(N_{I}\right)=\frac{N P(1-P)}{N^{2}} \leq \frac{1}{N}$ \Rightarrow staider $\leq 1 / \sqrt{N}$. Chebysher \Rightarrow

$$
\begin{equation*}
P\left\{\left|\frac{N_{I}}{N}-P_{I}\right|=O(1 / \sqrt{N})\right\} \geq 0.99 \quad \forall I<[0,1]^{2} \tag{*}
\end{equation*}
$$

- Q: does (*) hold for all I simultaneously, i.e. is it true that

$$
\begin{equation*}
P\left\{\forall I<(0,1)^{2}:\left|\frac{N_{I}}{N}-\operatorname{Area}(I)\right|=0(1 / \sqrt{N})\right\} \geqslant 0.99 ? \tag{*x}
\end{equation*}
$$

(is there a "universal sample"?)

- No:

- Q: Does this hold for simple shapes, such as IE rectangles? YES ©

THM (Discrepancy) A set of N independent random points, uniformly drawn from the square $[0,1]^{2}$, satisfies the following with probability ≥ 0.99. For any axis-alinged rectangle $I \subset[0,1)^{2}$, the fraction of the points in I satisfies

$$
\left|\frac{N_{I}}{N}-\operatorname{area}(I)\right| \leq C \sqrt{\frac{\log N}{N}}
$$

- Relevance for statistic: representative sampling:

e.g. We want a sample in which all age brackets and income brackets we fairly represented

PRoof "An epsilon-net method," based on a union bound

$$
P\left(\tilde{U}_{i=1} E_{i}\right) \leq \sum_{i=1}^{\tilde{N}} P\left(E_{i}\right) \quad \forall \text { events } E_{i}
$$

Want to show:

$$
\begin{aligned}
& P\{\exists \text { rectangle } I \quad \underbrace{\left|\frac{N_{I}}{N}-P_{I}\right|>c \sqrt{\frac{\log N}{N}}}_{E_{I}}\} \leqslant 0.01 \\
& =\mathbb{P}\left(\underset{I \in \text { rectangles }}{\bigcup} E_{I}\right) \leq \sum_{I \in \text { rectangles }} P\left(E_{I}\right) \\
& \uparrow_{\text {infinite sum }} \dot{=} \Rightarrow
\end{aligned}
$$

(1) Disccetize :

a "grid rectangle"
There are $\leq N^{4}$ grid rectangles. Not ∞ anymore! (i)
(2) Concentration: \forall fixed grid rectangle $I, \quad N_{I} \sim \operatorname{Binom}\left(N, P_{I}\right) \Rightarrow$

$$
\begin{aligned}
\mathbb{P}\left\{\left|\frac{N_{I}}{N}-P_{I}\right| \geq \delta\right\} & =\mathbb{P}\left\{\left|N_{I}-P_{I} N\right| \geqslant \delta N\right\} \\
& \text { Hoeffoling } P \cdot 2 \\
& \stackrel{\sum}{=} 2 \exp \left(-2 \delta^{2} N\right) \quad \forall \delta \geqslant 0 \\
& \leq \frac{1}{100 N^{4}} \quad \text { if we choose } \delta=C \sqrt{\frac{\log N}{N}}
\end{aligned}
$$

a large absolute constant
(3) Union bound:

$$
\begin{gather*}
\mathbb{P}\left\{\exists I \in \text { grid rectangles: }\left|\frac{N_{I}}{N}-P_{I}\right| \geqslant \delta\right\} \stackrel{\downarrow}{\leq} \sum_{I \in \text { grid rec }} \mathbb{P}\left\{\left|\frac{N_{I}}{N}-P_{I}\right| \geq \delta\right\} \\
\leq N^{4} \cdot \frac{1}{100 N^{4}}=0.01 . \tag{3}
\end{gather*}
$$

We proved: $\quad P\left\{\forall\right.$ grid rec I: $\left.\quad\left|\frac{N_{I}}{N}-P_{I}\right| \leq C \sqrt{\frac{\log N}{N}}\right\} \geq 0.99$.
Assume this event occurs,
(4) Approximation " \forall rectangle \approx a grid rectangle"

- \forall rectangle J lies in a grid rectangle I with area $P_{I} \leq P_{J}+\frac{4}{N} \Rightarrow$

$$
\begin{aligned}
& \frac{N_{J}}{N} \leq \frac{N_{I}}{N} \leq P_{I}+c \sqrt{\frac{\log N}{N}} \quad\left(b_{y}\right. \text { step 3)} \\
& \leq \rho_{J}+\frac{4}{N}+c \sqrt{\frac{\log N}{N}} \leq P_{J}+c^{\prime} \sqrt{\frac{\log N}{N}} \\
& \text { Smaller }{ }_{\text {lager }}
\end{aligned}
$$

- Similarly, $\frac{N_{J}}{N} \geqslant P_{J}-C^{\prime} \sqrt{\frac{\log N}{N}}$ (DM)

Thus:

$$
\left|\frac{N_{I}}{N}-P_{J}\right| \leq C^{\prime} \sqrt{\frac{\log N}{N}} \quad \forall \text { rectangle } I . \quad Q E D \text {. }
$$

REMARKS (1) $\log N$ can be removed.
(2) Uniform distr. on $[0,1]^{2}$ can be replaced with \forall distr. on \mathbb{R}^{2}
(3) Rectangles can be replaced by other simple shapes such as triangles, circles, ellipses...
(4) The result can be extended to \mathbb{R}^{d} :

$$
\left|\frac{W_{I}}{\omega}-P_{I}\right| \leqslant C \sqrt{\frac{d}{N}} \quad \forall \text { box } I
$$

All these will follow from general UC theory (covered later).

