Lecture 8

- Networks = graphs. Social (friendships, Instagram), Technological (Internet), Biological (protein interactions)

Example: Internet (vertices = $1 P$ addresses)

- Model: random graphs.

Simplest.
Def Erdäs-Renyi model $C(N, P)$:
Fix a set of N vertices.
Connect each pair of vertices with an edge independently, with prob.

$G(N, P)$ for $N=200, \rho=\frac{1}{40}$

$G(N, p)$ for $p=\frac{1}{100}$

- Def The degree of a vertex i is $\operatorname{deg}(i)=\#$ edges connected to i

$$
\operatorname{deg}(i)=S_{N-1} \sim \operatorname{Binom}(N-1, \rho) \Rightarrow \mathbb{E} \operatorname{deg}(i)={ }_{(N-1) \rho=i d}
$$

"Expected degree"
Phase transitions (Erdös-Rény: 1960] $N \rightarrow \infty, \quad \rho=\rho(N)$:
. $d=0: G=$ empty graph .
subcritical: $\cdot d<1-\varepsilon: G=$ small connected components: isolated vertices \& trees. All components have size $O(\log N)$
supercritical: $\cdot d>1+\varepsilon: G=a$ giant connected component (constant fraction of vertices) + isolated vertices + trees of size $O(\log N)$ as before connected: $d>(1+\varepsilon) \log N: G$ is connected (giant component takes over). Evolution.

Def a graph is d-regular if $\operatorname{deg}(i)=d \quad \forall i$
We will show, $d \sim \log N$ is a phase
 transition for a regularity of $G(N, p):\left\{\begin{array}{l}d \gg \log N \Rightarrow \text { almost d-regular } \\ d<\log N \Rightarrow \text { very for from it. }\end{array}\right.$

THM (Regularity of dense random graphs). abs. const $C>0$ such that if $d>C \log N$ then $G(N, P)$ is almost d-regular with high prob:

$$
\mathbb{P}\{\forall i: \underbrace{0.9 d \leq \operatorname{deg}(i) \leq 1.1 d}_{\uparrow}\} \geqslant 0.9
$$

Proof (1) $F i x$ any vertex $i \in\{1, \ldots, N\}$.

$$
\mathbb{P}\left(E_{i}^{c}\right)=\mathbb{P}\left\{\left|\operatorname{leg}_{\text {Binomial }}(i)-d\right| \geqslant 0.1 d\right\}
$$

Binomial with mean \Rightarrow use Chernoff inequality (lee 7):
Binom. with mean μ

$$
\mathbb{P}\left\{\left|\stackrel{S}{S}_{N}-\mu\right| \geqslant \delta \mu\right\} \leq 2 \exp \left(-\delta^{2} \mu / 3\right) \quad \forall \delta \in[0,1]
$$

(th $2 \exp \left(-\frac{0.1^{2} d}{3}\right) \leq 2 \exp \left(-\frac{0.01 \cdot C \log N}{3}\right) \leq \frac{1}{10 \mathrm{~N}}$
if we choose $C_{\text {a large oust. }}$
(2) Union bound

$$
\begin{aligned}
& \mathbb{P}\left(\bigcup_{i=1}^{N} E_{i}^{c}\right) \leq \sum_{i=1}^{N} \mathbb{P}\left(E_{i}^{c}\right) \leq N \cdot \frac{1}{10 N}=\frac{1}{10} \\
& \Rightarrow \mathbb{P}\left(\bigcap_{i=1}^{N} E_{i}\right) \geqslant 1-\frac{1}{10}=\frac{9}{10} \text { (de Morgan law) . QED } \\
&-2-
\end{aligned}
$$

TM (Irregularity of sparse random graphs)
\exists cabs. const $c>0$ such that of $d<c \log N$, $G(N, P)$ has a vertex with too large degree with high poos:

$$
P\{\exists i: \underbrace{\operatorname{deg}(i) \geqslant 10 d}_{{ }^{\prime \prime} E_{i}}\} \geqslant 0.9
$$

Proof $\operatorname{deg}(i) \sim$ Binomial with mean d
Use the "reverse Chernoff's inequality" ($k \omega$):
Binom, mean $\quad P\left\{S_{N} \geqslant t\right\} \geqslant(\mu / t)^{t} \quad \forall t \geqslant \mu \quad$ for $\mu=d, t=10 d$
$P\left(E_{i}\right) \geqslant e^{-d}\left(\frac{d}{10,}\right)^{10 d} \geqslant e^{-20 d} \geqslant e^{-20 c \log N} \geqslant \frac{100}{N}$ if we choose coo a sm all const.

- $\mathbb{P}\left(\bigcup_{i=1}^{N} E_{i}\right)=1-\mathbb{P}\left(\bigcap_{i=1}^{N} E_{i}^{c}\right)=1-\prod_{i=1}^{N} \mathbb{P}\left(E_{i}^{c}\right) \quad$ (independence)

$$
\begin{equation*}
\geqslant 1-\tilde{\Pi}_{i=1}\left(1-P\left(E_{i}\right)\right) \geqslant 1-\underbrace{\left(1-\frac{100}{N}\right)^{N}}_{e^{-100}} \geqslant 0.9 \tag{DIr}
\end{equation*}
$$

ERROR! $\operatorname{deg}(i)$ are NOT independent

FIX: Consider a bipartite sulgraph of $G:$ split the vertices into two halves: Count only the edges from left halt These degrees are independent
 HL

