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estimating the mean
Given X1, . . . ,Xn, a real i.i.d. sequence, estimate µ = EX1.

“Obvious” choice: empirical mean

µn =
1

n

n∑
i=1

Xi

By the central limit theorem, if X has a finite variance σ2,

lim
n→∞

P
{√

n |µn − µ| > σ
√

2 log(2/δ)
}
≤ δ .

We would like non-asymptotic inequalities of a similar form.

If the distribution is sub-Gaussian,
E exp(λ(X − µ)) ≤ exp(σ2λ2/2), then with probability at least
1− δ,

|µn − µ| ≤ σ

√
2 log(2/δ)

n
.
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empirical mean–heavy tails

The empirical mean is computationally attractive.

Requires no a priori knowledge and automatically scales with σ.

If the distribution is not sub-Gaussian, we still have Chebyshev’s
inequality: w.p. ≥ 1− δ,

|µn − µ| ≤ σ
√

1

nδ
.

Exponentially weaker bound. Especially hurts when many means
are estimated simultaneously.
This is the best one can say. Catoni (2012) shows that for each δ
there exists a distribution with variance σ such that

P
{
|µn − µ| ≥ σ

√
c
nδ

}
≥ δ .



median of means

A simple estimator is median-of-means. Goes back to Nemirovsky,
Yudin (1983), Jerrum, Valiant, and Vazirani (1986), Alon, Matias,
and Szegedy (2002).

µ̂MM
def
= median

 1

m

m∑
t=1

Xt , . . . ,
1

m

km∑
t=(k−1)m+1

Xt



Lemma
Let δ ∈ (0, 1), k = 8 log δ−1 and m = n

8 log δ−1 . Then with
probability at least 1− δ,

|µ̂MM − µ| ≤ σ

√
32 log(1/δ)

n
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proof

By Chebyshev, each mean is within distance σ
√

4/m of µ with
probability 3/4.

The probability that the median is not within distance σ
√

4/m of
µ is at most P{Bin(k, 1/4) > k/2} which is exponentially small
in k .



median of means

• Sub-Gaussian deviations.

• Scales automatically with σ.

• Parameters depend on required confidence level δ.

• See Lerasle and Oliveira (2012), Hsu and Sabato (2013),
Minsker (2014) for generalizations.

• Also works when the variance is infinite. If
E
[
|X − EX |1+α

]
= M for some α ≤ 1, then, with

probability at least 1− δ,

|µ̂MM − µ| ≤
(

8
(12M)1/α ln(1/δ)

n

)α/(1+α)



why sub-Gaussian?

Sub-Gaussian bounds are the best one can hope for when the
variance is finite.

In fact, for any M > 0, α ∈ (0, 1], δ > 2e−n/4, and mean
estimator µ̂n, there exists a distribution E

[
|X − EX |1+α

]
= M

such that

|µ̂n − µ| ≥
(

M1/α ln(1/δ)

n

)α/(1+α)

.

Proof: The distributions P+(0) = 1− p,P+(c) = p and
P−(0) = 1− p,P−(−c) = p are indistinguishable if all n
samples are equal to 0.



why sub-Gaussian?

This shows optimality of the median-of-means estimator for all α.

It also shows that finite variance is necessary even for rate n−1/2.

One cannot hope to get anything better than sub-Gaussian tails.
Catoni proved that sample mean is optimal for the class of
Gaussian distributions.



multiple-δ estimators

Do there exist estimators that are sub-Gaussian simultaneously for
all confidence levels?

An estimator is multiple-δ -sub-Gaussian for a class of distributions
P and δmin if for all δ ∈ [δmin, 1), and all distributions in P ,

|µ̂n − µ| ≤ Lσ

√
log(2/δ)

n
.

The picture is more complex than before.
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known variance

Given 0 < σ1 ≤ σ2 <∞, define the class

P [σ2
1,σ

2
2]

2 = {P : σ2
1 ≤ σ

2
P ≤ σ

2
2.}

Let R = σ2/σ1.

• If R is bounded then there exists a multiple-δ -sub-Gaussian
estimator with δmin = 4e1−n/2 ;

• If R is unbounded then there is no multiple-δ -sub-Gaussian
estimate for any L and δmin → 0.

A sharp distinction.
The exponentially small value of δmin is best possible.
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construction of multiple-δ estimator

Reminiscent to Lepski’s method of adaptive estimation.

For k = 1, . . . ,K = log2(1/δmin), use the median-of-means
estimator to construct confidence intervals Ik such that

P{µ /∈ Ik} ≤ 2−k .

(This is where knowledge of σ2 and boundedness of R is used.)
Define

k̂ = min

k :
K⋂

j=k

Ij 6= ∅

 .

Finally, let

µ̂n = mid point of
K⋂

j=k̂

Ij



proof

For any k = 1, . . . ,K ,

P{|µ̂n − µ| > |Ik |} ≤ P{∃j ≥ k : µ /∈ Ij}

because if µ ∈ ∩K
j=k Ij , then ∩K

j=k Ij is non-empty and therefore

µ̂n ∈ ∩K
j=k Ij .

But

P{∃j ≥ k : µ /∈ Ij} ≤
K∑

j=k

P{µ /∈ Ij} ≤ 21−k



higher moments

For η ≥ 1 and α ∈ (2, 3], define

Pα,η = {P : E|X − µ|α ≤ (η σ)α} .

Then for some C = C(α, η) there exists a multiple-δ estimator
with a constant L and δmin = e−n/C for all sufficiently large n.



k-regular distributions

This follows from a more general result:
Define

p−(j) = P


j∑

i=1

Xi ≤ jµ

 and p+(j) = P


j∑

i=1

Xi ≥ jµ

 .

A distribution is k-regular if

∀j ≥ k, min(p+(j), p−(j)) ≥ 1/3.

For this class there exists a multiple-δ estimator with a constant L
and δmin = e−n/k for all n.



multivariate distributions

Let X be a random vector taking values in Rd with mean µ = EX
and covariance matrix Σ = E(X − µ)(X − µ)T .

Given an i.i.d. sample X1, . . . ,Xn, we want to estimate µ that has
sub-Gaussian performance.

What is sub-Gaussian?

If X has a multivariate Gaussian distribution, the sample mean
µn = (1/n)

∑n
i=1 X1 satisfies, with probability at least 1− δ,

‖µn − µ‖ ≤

√
Tr(Σ)

n
+

√
2λmax log(1/δ)

n
,

Can one construct mean estimators with similar performance for a
large class of distributions?
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coordinate-wise median of means

Coordinate-wise median of means yields the bound:

‖µ̂MM − µ‖ ≤ K

√
Tr(Σ) log(d/δ)

n
.

We can do better.



multivariate median of means
Hsu and Sabato (2013), Minsker (2015) extended the
median-of-means estimate.

Minsker proposes an analogous estimate that uses the multivariate
median

Med(x1, . . . , xN) = argmin
y∈Rd

N∑
i=1

‖y − xi‖ .

For this estimate, with probability at least 1− δ,

‖µ̂MM − µ‖ ≤ K

√
Tr(Σ) log(1/δ)

n
.

No further assumption or knowledge of the distribution is required.

Computationally feasible.

Almost sub-Gaussian but not quite.

Dimension free.



median-of-means tournament

We propose a new estimator with a purely sub-Gaussian
performance, without further conditions.

The mean µ is the minimizer of f (x) = E‖X − µ‖2.

For any pair a, b ∈ Rd , we try to guess whether f (a) < f (b) and
set up a “tournament”.

Partition the data points into k blocks of size m = n/k .

We say that a defeats b if

1

m

∑
i∈Bj

‖Xi − a‖2 <
1

m

∑
i∈Bj

‖Xi − b‖2

on more than k/2 blocks Bj .



median-of-means tournament

Within each block compute

Yj =
1

m

∑
i∈Bj

Xi .

Then a defeats b if

‖Yj − a‖ < ‖Yj − b‖

on more than k/2 blocks Bj .

Lemma. Let k = d200 log(2/δ)e. With probability at least
1− δ, µ defeats all b ∈ Rd such that ‖b − µ‖ ≥ r , where

r = max

800

√Tr(Σ)

n
, 240

√
λmax log(2/δ)

n

 .



sub-gaussian estimate

For each a ∈ Rd , define the set

Sa =
{
x ∈ Rd : such that x defeats a

}
Now define the mean estimator as

µ̂N ∈ argmin
a∈Rd

radius(Sa) .

By the lemma, w.p. ≥ 1− δ,

radius(Sµ̂N ) ≤ radius(Sµ) ≤ r

and therefore
‖µ̂n − µ‖ ≤ r .



sub-gaussian performance

Theorem. Let k = d200 log(2/δ)e. Then, with probability at
least 1− δ,

‖µ̂n − µ‖ ≤ r

where

r = max

800

√Tr(Σ)

n
, 240

√
λmax log(2/δ)

n

 .

• No other condition other than existence of Σ.

• “Infinite-dimensional” inequality: the same holds in Hilbert
spaces.

• The constants are explicit but sub-optimal.



proof of lemma: sketch

Let X = X − µ and v = b − µ. Then µ defeats b if

−
1

m

∑
i∈Bj

〈
X i , v

〉
+ ‖v‖2 > 0

on the majority of blocks Bj . We need to prove that this holds for
all v with ‖v‖ = r .

Step 1: For a fixed v , by Chebyshev, with probability at least 9/10,∣∣∣∣∣∣ 1

m

∑
i∈Bj

〈
X i , v

〉∣∣∣∣∣∣ ≤ √10‖v‖
√
λmax

m
≤ r2/2

So by a binomial tail estimate, with probability at least
1− exp(−k/50), this holds on at least 8/10 of the blocks Bj .



proof sketch

Step 2: Now we take a minimal ε cover the set r · Sd−1 with
respect to the norm 〈v ,Σv〉1/2.

This set has < ek/100 points if

ε = 5r
(

1

k
Tr(Σ)

)1/2

,

so we can use the union bound over this ε-net.

Step 3: To extend to all points in r · Sd−1, we need that, with
probability at least 1− exp(−k/200),

sup
x∈r ·Sd−1

1

k

k∑
j=1

1{| 1
m

∑
i∈Bj
〈X i ,x−vx〉|≥r2/2} ≤

1

10
.

This may be proved by standard techniques of empirical processes.



algorithmic challenge

Computing the proposed estimator is an interesting open problem.

Coordinate descent does not quite do the job—it only guarantees
‖µ̂n − µ‖∞ ≤ r .



regression function estimation

Consider the standard statistical supervised learning problem under
the squared loss.

Let (X ,Y ) take values in X × R.

The goal is to predict Y , upon observing X , by f (X ) for some
f : X → R.

We measure the quality of f by the risk

E(f (X )− Y )2 .

We have access to a sample Dn = ((X1,Y1), . . . , (Xn,Yn)).

We choose f̂n from a fixed class of functions F . The best function
is

f ∗ = argmin
f∈F

E(f (X )− Y )2 .



regression function estimation

We measure performance by either the mean squared error

‖f̂n − f ∗‖2
L2

= E
(
(f̂n(X )− f ∗(X ))2|Dn

)
or by the excess risk

R(f̂n) = E
(
(f̂n(X )− Y )2|Dn

)
− E(f ∗(X )− Y )2 .

A procedure achieves accuracy r with confidence 1− δ if

P
(
‖f̂n − f ∗‖L2 ≤ r

)
≥ 1− δ .

High accuracy and high confidence are conflicting requirements.

The accuracy edge is the smallest achievable accuracy with
confidence 1− δ = 3/4.

A quest with a long history has been to understand the tradeoff.
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empirical risk minimization

The standard learning procedure is empirical risk minimization
(erm):

f̂n = argmin
f∈F

n∑
i=1

(f (Xi )− Yi )
2 .

erm achieves near-optimal accuracy/confidence tradeoff for
well-behaved distributions.

The performance of erm is now well understood.

It works well if both Y and f (X ) have sub-Gaussian tails (for all
f ∈ F).



four complexity parameters

The performance of erm depends on the intricate interplay
between the geometry of F and the distribution of (X ,Y ).
We assume that F is convex.

Let Fh,r = {f − h : f ∈ F , ‖f − h‖L2 ≤ r} and let
M(Fh,r , ε) be the ε-packing numbers.
For κ, η > 0, set

λQ(κ, η) = sup
h∈F

inf{r : logM(Fh,r , ηr) ≤ κ2n} .

Similarly, let

λM(κ, η) = sup
h∈F

inf{r : logM(Fh,r , ηr) ≤ κ2nr2}



four complexity parameters

rE (κ) = sup
h∈F

inf

{
r : E sup

u∈Fh,r

∣∣∣∣∣ 1
√

n

n∑
i=1

εiu(Xi )

∣∣∣∣∣ ≤ κ√nr

}
,

Finally, let

rM(κ, h)

= inf

{
r : E sup

u∈Fh,r

∣∣∣∣∣ 1
√

n

n∑
i=1

εiu(Xi ) · (h(Xi )− Yi )

∣∣∣∣∣ ≤ κ√nr2

}
.

and
r̃M(κ, σ) = sup

h∈F (σ)
Y

rM(κ, h)

where F (σ)
Y = {f ∈ F : ‖f (X )− Y ‖L2 ≤ σ}.



accuracy edge

Suppose ‖Y − f ∗(X )‖L2 ≤ σ for a known constant σ > 0.
Introduce the “complexity”

r∗ = max{λQ(c1, c2), λM(c1/σ, c2), rE (c1), r̃M(c1, σ)} .

Mendelson (2016) proved that r∗ is an upper bound for the
accuracy edge (under a “small-ball” assumption).



linear regression–an example

Let F = {〈t, ·〉 : t ∈ Rd} be the class of linear functionals.

Let X be an isotropic random vector in Rd such that
‖ 〈X , t〉 ‖L4 ≤ L‖ 〈X , t〉 ‖L2 .

Suppose Y = 〈t0,X〉+ W for some t0 ∈ Rd and symmetric
independent noise W with variance σ2.



linear regression
Given n independent samples (Xi ,Yi ), least-squares regression
(erm) finds t̂n such that

∥∥t̂n − t
∥∥ ≤ c

σ

δ

√
d
n

with probability 1− δ − e−cd .

Note the weak accuracy/confidence tradeoff.

Lecué and Mendelson (2016) show that this is essentially optimal.

However, if everything is sub-Gaussian, one has

∥∥t̂n − t
∥∥ ≤ cσ

√
d
n

with probability 1− e−cd .

We introduce a procedure that achieves the same performance as
sub-Gaussian erm but under the general fourth-moment condition.



median-of-means tournament

A natural idea is to replace erm by minimization of the
median-of-means estimate of the risk E(f (X )− Y )2.

Difficult to analyze—may be suboptimal.

Instead, we run a median-of-means tournament.

The idea is that, based on a median-of-means estimate of the
difference

E(f (X )− Y )2 − E(h(X )− Y )2 ,

we can have a good guess if f or h has a smaller risk.
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median-of-means tournament

To make the idea work, we design a (two- or) three-step procedure.

Each step uses an independent sample so before starting we split
the data into (two or) three equal parts.

The procedure has a parameter r > 0, the desired accuracy level.

The main steps of the procedure are:

• Distance referee

• Elimination phase

• Champions league



step 1: the distance referee

For each pair f , h ∈ F , one may use define a median-of-means
estimate Φn(f , h) using (|f (Xi )− h(Xi )|)n

i=1 such that, with
“high probability”, for all Φn(f , h),

if Φn(f , h) ≥ βr then ‖f − h‖L2 ≥ r

and
if Φn(f , h) < βr then ‖f − h‖L2 < αr

for some constants α, β.

Matches are only allowed between f , h ∈ F if Φn(f , h) ≥ βr .



step 2: elimination phase

For any pair f , h ∈ F , if the distance referee allows a match,
calculate the median-of-means estimate based on the samples

(f (Xi )− Yi )
2 − (h(Xi )− Yi )

2 .

if the estimate is negative, f wins the match otherwise h wins.

f ∈ F is a champion if it wins all its matches. Let H be the set
of all champions.

If one only cares about the mean squared error ‖f̂n − f ∗‖L2 , then

one may select any champion f̂n ∈ H.

One may show that, with “high probability”, H contains f ∗ and
possibly other functions within distance O(r) of f ∗.

If the excess risk also matters, all champions in H advance to the
Champions League for the playoffs.



step 3: Champions League

To select a champion with a small excess risk, we use the simple
fact that, for any f ∈ F ,

E(f (X )− Y )2 − E(f ∗(X )− Y )2

≤ −2E(f ∗(X )− f (X ))(f (X )− Y ) .

The Champions League winner is selected based on
median-of-means estimates of E(h(X )− f (X ))(f (X )− Y ) for
all pairs f , h ∈ F .



result

Suppose that F is a convex class of functions and

• for every f , h ∈ F , ‖f − h‖L4 ≤ L‖f − h‖L2 ;

• for every f ∈ F , ‖f − Y ‖L4 ≤ L‖f − Y ‖L2 ;

Then the median-of-means tournament achieves an essentially
optimal accuracy/confidence tradeoff.

For any r > r∗, with probability at least

1− exp
(
−c0n min{1, σ−2r2}

)
,

‖f̂ − f ∗‖L2 ≤ cr

and

E
(
(f̂ (X )− Y )2|Dn

)
≤ E(f ∗(X )− Y )2 + (cr)2 .



linear regression

Recall the example F = {〈t, ·〉 : t ∈ Rd} with X isotropic such
that ‖ 〈X , t〉 ‖L4 ≤ L‖ 〈X , t〉 ‖L2 and Y = 〈t0,X〉+ W .
We obtain ∥∥t̂n − t

∥∥ ≤ cσ

√
d
n

with probability 1− e−cd and also

E
(
(f̂ (X )− Y )2|Dn

)
− E(f ∗(X )− Y )2 ≤ cσ2 d

n
.



algorithmic challenge

Find an algorithmically efficient version of the median-of-means
tournament.



references

G. Lugosi and S. Mendelson.
Sub-Gaussian estimators of the mean of a random vector.
submitted, 2017.

G. Lugosi and S. Mendelson.
Risk minimization by median-of-means tournaments.
submitted, 2016.

E. Joly, and G. Lugosi, and R. Imbuzeiro Oliveira.
On the estimation of the mean of a random vector.
Electronic Journal of Statistics, 2017.

L. Devroye, M. Lerasle, G. Lugosi, and R. Imbuzeiro Oliveira.
Sub-Gaussian mean estimators.
Annals of Statistics, 2016.



references

C. Brownlees, E. Joly, and G. Lugosi.
Empirical risk minimization for heavy-tailed losses.
Annals of Statistics, 43:2507–2536, 2015.

E. Joly, and G. Lugosi.
Robust estimation of U-statistics.
Stochastic Processes and their Applications, to appear, 2015.

S. Bubeck, N. Cesa-Bianchi, and G. Lugosi.
Bandits with heavy tail.
IEEE Transactions on Information Theory, 59:7711-7717, 2013.


