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Summary. In the paper we prove two inequalities involving Gelfand numbers 
of operators with values in a Hilbert space. The first inequality is a Rade- 
macher version of the main result in [Pa-To-1] which relates the Gelfand 
numbers of an operator from a Banach space X into l~ with a certain Rade- 
macher average for the dual operator. The second inequality states that 
the Gelfand numbers of an operator u from l~ into a Hilbert space satisfy 
the inequality 

k 1/2 Ck(U ) ~ C H u 11 (log(1 + N/k)) 1/2 

where C is a universal constant. Several applications of these inequalities 
in the geometry of Banach spaces are given. 

O. Introduction 

In recent times, much attention has been paid to the study of (bounded linear) 
operators in Hilbert spaces and Banach spaces by means of geometric quantities, 
such as n-widths and entropy numbers. In the eighties research activity in this 
area grew considerably. A great deal of classical problems were solved, interest- 
ing new developments started, and deep connections between Banach space 
geometry and other areas of mathematics were discovered. In this article we 
prove two new inequalities in the local theory of Banach spaces having striking 
applications in the geometry of Banach spaces and the theory of Rademacher 
processes. Moreover, they offer new current research directions. These inequali- 
ties involve Gelfand numbers and Rademacher averages for operators with 
values in a Hilbert space (Theorem 1.2) and Gelfand numbers for operators 
from l] into a Hilbert space (Theorem 2.2). 

Moreover, the results are employed to the study of large subspaces of l~ 
and l~ (Sect. 3) and to the problem of large euclidean subspaces (Sect. 4). 

Let us recall some notions. The dual Banach space and the closed unit 
ball of a Banach space X are denoted by X* and Bx, respectively. For  an 



480 B. C a r l  a n d  A.  P a j o r  

operator u from a Banach space X into a Banach space Y the n-th dyadic 
entropy number of u is defined by 

2 n -  1 

e, (u)=." inf{e > 0: 3 y 1 . . . .  , Y2,, -, e Y: u (Bx) c [.9 (Yi + e By)}. 
1 

Moreover, the n-th approximation number of u is defined by 

a.(u)=.- in f{ l lu -  vlt : rank v<n} ,  

the n-th Gelfand number by 

c,,(u)=inf{ l[Ulzll : Z c X ,  codim Z <n} 

and the n-th Kolmogorov number by 

dn(u) = inf sup i n f l l u (x ) - y l [ .  
F ~ Y ,  d imF<n x ~ B x  y~F 

The n-th Kolmogorov number d.(u) of an operator u may be described as the 
infimum of all e > 0  such that there is a subspace F ~  Ywith dim F < n  and 

u ( B x ) ~ F  + e B r .  

Roughly speaking the Kolmogorov numbers d.(u) deal with that part of the 
set u(Bx) which lies outside a certain finite dimensional subspace F c  Y. 

There is a well-known duality relation (see [-Pie]) d. (u*)= c. (u). 
We denote by l~ the space IR" equipped with the norm 

t lx l lp=  Ixil p , x = ( x l , . . . , x , ) e l R " ,  
i =  

l ~ p ~  

and by B 7, its unit ball. 
There are several constants which enter into the estimates below. These 

constants are denoted by letters like a, a l ,  bl, c, c~, c2 .... We did not distinguish 
carefully between the different constants neither did we try to get good estimates 
for them. The same letter will be used to denote different universal constants 
in different parts of the paper. 

1. Gelfand numbers and Rademacher averages 

This section is devoted to basic estimates for Gelfand numbers and entropy 
numbers of operators with values in a Hilbert space with Rademacher average. 

For  this purpose we need the so-cal led/-norm of an operator from l~ into 
a Banach space X which is defined by 

/ (u )=(  j" Ilu(x)ll ~ d~.(x)) ~/~ 
Rn 
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where y, denotes the canonical (normalized) Gaussian measure on the euclidean 
space IR". Moreover, for any operator u from 12 into X we define l(u) by 

l(u) = Sup {l(uv): II v= l~ ~ 12 II ~ 1, n = 1, 2,...}. 

V. Milman discovered that the / -norm is an appropriate parameter for esti- 
mating Gelfand numbers (c.f. [M.1]). The sharp inequality which relates the 
Gelfand numbers with the /-norm is the main result from [Pa-To.1] which 
we now recall. 

Theorem 1.1 [Pa-To.1]. L e t  X be a Banach space and let u: X ~ l 2 be a compact 
operator. Then 

Sup k '/2 Ck(U)<a I(U*) (1.1) 
k > l  

where a is a universal constant. 

Remark. This result solves the following geometrical problem: given an n-dimen- 
sional Banach space X and an euclidean norm I1" I]2 on X and 0 < 2 < 1, find 
a subspace E of X with dim E > 2 n such that 

IlxH2<__m,f(1-2)HxlF for x~E. 

Here M ,  denotes the Levy mean of the dual norm of X, 

M , = (  ~ IIxlr2, d~(x)) 1/2. 
Sn 1 

where a is the normalized rotation invariant measure on the sphere S"-1 
= {xelR": I Lx 112 = 1 }. This problem was considered by V. Milman who proved 
in [M.1] that f (1  -2)__< c/(1 - 2 )  where c is a universal constant. In this geometri- 
cal language, Theorem 1.1 states that even 

f (1  -)~) < c / (1 -2 )  l/z. 

This kind of inequality possesses remarkable applications (cf. [M.2], [M.3], 
[B-M], [M-P.1], [M-P.2], [Pa-To.4], [P.2]...) For  more information we refer 
to a forthcoming book of G. Pisier [P.4]. 

Now for our main theorem in this section we use a modified notion of 
the / -norm by taking instead of Gaussian variables, Rademacher variables. Let 
f l  . . . . .  f,, be an orthonormal  basis of l~' and let v: 1~' ~ Y be an operator. Denote 

}12\1/2 

\ e t = •  i = l  

It is well-known that r(v)<c l(v) where c is a universal constant and actually 
the two norms r(v) and l(v) are equivalent when Y is a cotype q Banach space 
(see [Ma-P]).  In some cases, a direct application of (1.1) will not give the sharp 
"logarithmic factor". The following inequality is the announced Rademacher 
version of Theorem 1.1. 
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Theorem 1.2. Let f~ . . . .  f,. be an orthonormal basis of  17. Let X be a Banach 
space and let u: X ~ ~ be a rank n operator. Then 

kl/2 Ck(U)<=b(Average eiu*(f~) ) (log(l +n/k)) 1/2 
\ e~= +_1 i 

(1.2) 

for 1 < k < n < m, m = 1, 2 . . . . .  where b is a universal constant. 

Remark. (1) If we choose for (f/)i= 1 ...... the canonical basis of ~" ,  then for the 
identity operator  i from l] into l~, we have r( i*)= 1. Thus from theorem 1.2 
we at once conclude the inequality, 

Ck(i: l"x ~ 1,2)< b ( l ~  n/k) f /2 (1.3) 

for k =  1, 2 . . . . .  n, n =  1, 2 . . . . .  where b is a universal constant. Observe that as 
l(i*)>c(log n) 1/2 for some constant c > 0 ,  the estimate (1.3) cannot be obtained 
directly from Theorem 1.1. It was shown in I-G-G] that this estimate (1.3) is 
optimal. A different proof  of the Garnaev and Gluskin result will be given 
at the end of Sect. 2. 

(2) Other related estimates in terms of the dual norm of the operator  norm 
l(.) may be found in [Pa-To.3]. 

Proof of  Theorem 1.2. The proof  consists of two steps. 

Step 1. Let f~ . . . . .  f,, be as in the statement of Theorem 1.2 and put 

r(v)=(Average ~ el v(f~)[12) 1/2 
\ e i=: i : l  i=1 

for every opera tor  v: ~ ~ Y 
In view of applying (1.1) we compare  the Gaussian and Rademacher  averages 

by the following inequality: 

l(v) <= al (log(1 + n 1/2 II v I1 r -  ~ (v))U 2 r(v), (1.4) 

where al is an absolute constant and rank v=n.  To prove this inequality let 
g~, ..., g,, be i.i.d, s tandard Gaussian variables and let t > 0  be a number  that 
will be chosen later. We define for each i =  1 . . . . .  m the truncated variables 
g'i by g~=gi on the set where ]gil < t and g ; = 0  elsewhere. Now since the variables 
(g',) are symmetric and bounded by t, a well known convexity argument gives 

( ~ tt2) 1/2 E g'~ v(f~) < t(r(v)). 
i 
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Now, let g'i'= gi -g ' i  and let P be the or thogonal  projection in l~' on to  the 
or thogonal  subspace to Ker  v. So we have v = vP and 

ii  ]E gi v v 2 ]E .' 
i i 

From the symmetry  of the variables (g'i') and the paral lelogram equali ty 
we deduce that  

] E  i g'i' = ]E  " 2   9 gi NP(fi)l[ : 
i = 1  

= I]g';ll~: ~. liP(f3112. 
i=I 

2 \ 1 / 2  
The latter sum, II P(fi)[I is the Hilbert-Schmidt  norm of P and is therefore 

' , i =  1 

equal to (rank p)1/2 = nl/2. 
Hence we get 

(IE i~=l g'i' v(fi)l[2f/2<= nl/2 Ilvll I[ g'; I[L:. 

An easy computa t ion  shows that  I] g'l' IlL: < (8/n) 1/4 t l/z e-t:/4 for t > 1. Therefore 
from the t r iangular  inequality we get 

l(v) <= (t + n 112 II v II r - '  (v)(8/~) '/4 t ' / :  e -m4)  r(v). 

We now choose t = 2(log(1 + n 1/2 ]1 v II r -  1 (v)))1/2 to minimize the last upper  bound  
of l(v) and conclude the p roof  of inequality (1.4). 

Step 2. In order  to control  the logari thmic factor involved in (1.4), we introduce 
a parameter  p > 0  and the following renorming:  let u: X--+l'~, we set Ilxllp 
--max(ll x II, P-11I u(x) l l) for every x ~X and write Xp for the space X equipped 
with the norm IL" lip- Moreove r  let i: Xp --+ X be the identity. Observe that ]Iill < 1 
and I]uiH <p .  As shown in [Pa-To.2] ,  this renorming will not  affect estimates 
on Ck(U) since we have the following character izat ion 

Ck (U) = inf{p > 0; p > ck (u i: Xp --+ 12)}. ((1.5) 

Therefore using theorem 1.1 and (1.5) we get that  if 

a k - l / Z l ( ( u i ) * ) < p  then c , (u )<p .  

For  this conclusion, owing to (1.4) it is sufficient to have 

aal  (log(1 + n 1/2 I]uiqI r -  l((ui)*))) 1/2 k-~/2 r((ui)*) < p. (1.6) 
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TO outl ine the p roo f  we denote  f ( p ) =  p n 1/z r-l((ui)*).  Since U u ill <p,  we can 
see that  (1.6) holds whenever  

(log(1 +f(p)))l/2 f ( p ) -  ~ <(aaO-~(k/n)~/z. (1.7) 

Clearly f is a con t inuous  funct ion and since It ill < 1, 

f (p) > p n 1/2 r -  1 (u*). (1.8) 

Let  E = Ker  u and  F = range(u) and  consider  the canonical  commuta t i ve  d i ag ram 

u 
X ' 17 

"+ T j 
X / E  ~ F. 

w 

M o r e o v e r  we use a similar d i ag ram for u i instead of u where E and w are 
subst i tuted by E o and wp respectively. Let  P be the o r thogona l  project ion f rom 
l~' on to  F. Clearly 

r((ui)*=r(w* P)>= Hw *-1  II-1 r(P) 
II W p  1 [t - 1 (rank p))l/2. 

N o w  rank(P)  = rank(u),  and ]]w~ 11] = m a x ( l / p ,  ]1 w -  1 ]1). Consequent ly ,  for p 
small enough,  

f (p) <(n/rank(u)) 1/2 = 1. (1.9) 

Observe  that  if n < k  then Ck(U)=O and we have  noth ing  to prove.  So we m a y  
assume n>k .  C o m b i n i n g  (1.8) and (1.9), for  any 2 > 1 ,  we m a y  find p such 
that  

f (p) = 2(n/k)l/E(log(1 + n/k)) 1/2. 

Set g (2 )=  2(n/k)~/Z(log(1 + n/k)) ~/2. An e lementary  c o m p u t a t i o n  shows tha t  

(log(1 + g(2))) 1/2 g(2) -1 < (aaO- l(k/n)l/2 

for some  universal  cons tan t  2 = b > 1. 
Hence  we can find p such tha t  

f (p) = b(n/k)l/2(log(1 + n/k)) 1/2 

and (1.7) is satisfied. Consequent ly  for such a n u m b e r  p, we have Ck(U)<p. 
Comi ng  back  to the definit ion o f f  and  observing  tha t  r((u i)*)N r(u*) we obta in  

p < b k -  1/2 (log(1 + n/k)) 1/2 r(u*) 

which proves  (1.2). [ ]  
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Now from the previous inequalities we provide corresponding inequalities 
for entropy numbers. First of all we recall a result from [CI] .  Let e > O  and 
let u: X ~ Y be an operator, then 

Sup k~ek(u)Na(a) Sup UCk(U) 
l ~ k ~ n  l ~ k ~ n  

(1.1o) 

for n =  1, 2 . . . . .  where a(c 0 depends only on ~. The relation (1.10) is also valid 
for Kolmogorov numbers instead of Gelfand numbers. The following lemma 
that we shall need is an immediate consequence of this result. 

Lemma 1.3. Let X and Y be Banach spaces and let u: X ~ Y be an operator. 
Let ~ > O, fl > O, ~ > 0 and let {si} stand either for  Gelfand numbers {ci} or Kolmo- 
gorov numbers {dl}. Then 

Sup k' log-~(l+;~/k)ek(u)<=a(a,  fl) Sup k~log-~( l+7/k)Sk(U)  (1.11) 
l<_k<_n l~k<_n 

for n = 1, 2 . . . .  where a(e, fl) depends only on c~ and ft. 

Proof  Let 1 <_m<-n. From (1.10) we deduce that 

m "+p e,,(u)<=a(c~+fl) Sup (k log0  +?/k)) ~ Sup 
l~k<_m l<k<=m 

k~ log-~  

Now observe that k log(1 + 7/k) is an increasing function of k. Hence 

m ~ log-~(1 +y/k) em(u)<=a(e+fl) Sup k" log-P(1 +7/k) Sk(U). 
1 <_k~m 

Taking the supremum on re<n,  we get (1.11). 

Corollary 1.4. Let f l ,  ... ,f,, be an orthonormal basis of  l'~. 
(a) Let  u: X --* l"~ be a rank n operator. Then 

m 112\1/2 
k'/2ek(U)<d(Average- \ ei=-+l i~-ls ) ( l~  

.for 1 <_ k <- n <_ m, m = 1, 2 . . . .  where d is a universal constant. 
(b) Let  v: l'~ ~ Y be a rank n operator. Then 

m 

kl/2 ek(v)<_d(Average ~"=l glv(fl)ll2)l/2(log(1-l-n/k))l/2 
- -  \ e i  = +  _ I i 

for 1 <_ k <- n <- m, m = 1, 2.. .  where d is a universal constant. 

Proof  The first inequality follows immediately from Theorem 12 and from 
(1.11) in Lemma 1.3. The second inequality can be checked along the same 
line by using in addition the relation Ck(V*)= dk(V). 
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Remark. The estimates of Corollary 1.4 are sharp (cf. remark to Corollary 2.4). 
The part (a) of corollary 1.4 is a Rademacher version of the Sudakov inequali- 

ty. To make it clear we restate this inequality. 

Corollary 1.5. L e t  TcF,~" and let N2(T, 5) be the minimal cardinality of  an e-net 
of  T in the euclidean metric. Then 

n 51 tl Average Sup ~ 
e t =  q- 1 . i = n  ( q ) i  = 1 e T i 

_--> a 5(log N2 (T, 5))1/2 (log(2 + n/log NE(T, 5)))- 1/2 

where a > 0 is a universal constant. 

Remark. (1) The Rademacher norm r( ' )  is usually defined as an L2-norm. From 
Kahane's inequalities, Corollary 1.5 is equivalent to Corollary 1.4 part (a). 

(2) Rademacher processes play an important  role in the study of empirical 
processes (see [Gi-Z], [T]). Within this framework, the inequality in Corollary 
1.5 gives new information. 

2. Gelfand numbers of operators from !~ into a Hilbert space 

The main aim of this section is to give an extension of the Garnaev-Gluskin 
result (1.3) to arbitrary operators from l] into a Hilbert space H. 

For  doing this we need some more notions. We will say that an operator 
u from a Banach space X into a Banach space Y is p-summing, 0 < p <  or, 
if there is a constant C > 0  such that, for all finite families xl  . . . . .  x ,  e X  we 
have 

I[u(xi)l] < C s u p  [(xi, a)l " I]all<l  9 
i i 

The smallest constant C satisfying this inequality is denoted by top(u). Sometimes 
1 1 

we use the following easy characterization of nv(u), = 1 - - ,  p' P 

top(u) = sup {Ttp (u v): II v: l~, ~ X 11 ~ 1, n = 1, 2 . . . .  }. 

Furthermore,  we say that a Banach space X is of (Rademacher) type p, I < p < 2, 
if there is a constant C > 0  such that for all finite families xl  . . . .  , x , ~ X  the 
inequality 

n (Average i=~l 2\1/2 [ip)l/p 

is valid. The (Rademacher) type p constant of X is defined by zp (X )= in fC .  
As an example let us mention that the function spaces Lr, 1 < r < oo, over arbi- 
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trary a-finite measure space are of type min(r, 2) (see [M-Sche]). For the Rade- 
macher type constant one has Zmi,r 2)(Lr) < ]//r (cf. [Ma-P] ). 

First of all we supplement the statement of Theorem 1.1 by the following 
conclusion. 

Lemma 2.1. Let X and Y be Banach spaces such that X* is of  type 2. Then 
for any 2-summing operator u from X into Y the inequality 

sup k 1/2 ck(u ) ~ a z2(X* )/1:2 (u) (2.1) 
k>=l 

is valid with the universal constant a of Theorem 1.1. 

Proof First we suppose Y= H to be a Hilbert space. For a 2-summing operator 
v from X into H we have 

l(v*) <= ~2 (X*) n2 (v**) 

by [D-M-To] .  A result of Pietsch tells us that n2(v**)=n2(v) (cf. [-Pie]), so 
that in consequence of the inequality (1.1) of Theorem 1.1. the inequality 

sup kl/2 Ck(V) < a z2(X*) n2 (v) 
k>_l 

comes out to be true. In the general case if u is a 2-summing operator from 
X into Y we employ the well-known factorization theorem for 2-summing opera- 
tors which states that u = w v  with a 2-summing operator v from X into H 
and an operator  w from H into Y, where H is a Hilbert space and 

(cf. [-Pie] ). This yields 

and thus finally 

~2(u)= Ilwll ~2(v) 

sup k 1/2 Ck(U) < ]1W ]1 sup k 1/2 Ck(V) 
k>=l k>=l 

supk  1/2 C k ( U ) ~ a z 2 ( X * ) g 2 ( u ) .  [] 
k>__l 

Now we are in a position to prove the main inequality of this section. 

Theorem 2.2. Let u be an operator from l] into a Hilbert space H. Then 

cAu)<=C k Ilutl (2.2) 

for 1 _< k-< n, n = 1, 2 . . . .  , where C > 0 is a universal constant. 

Proof To provide this inequality we first derive a corresponding estimate to 
(1.3) for identity operators from l] into l~, 1 < p < 2, and combine this estimates 
with the inequality (2.1) for arbitrary operators from lp into a Hilbert space 
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H by choosing an appropriate p. Indeed, we factorize an arbitrary operator 
u: l'~ ~ H by 

U:Up ll,p~ 

where il,p: 1]~1~ is the identity operator from l] into lp and up: l"p~H the 
operator from l~, into H induced by u. The multiplicativity of the Gelfand 
numbers then yields 

Czk (U) < Ck(Up) Ck(il. p). (2.3) 

The behaviour of the Gelfand numbers Ck(il,p) can be derived from the behaviour 
of the Gelfand numbers Ck(i: l] ~ l"z) by the inequality 

2 

Ck(il,p)<Ck(i) p= , 1 =  1-- 1--, 1 < p < 2 ,  p' p 

which is an immediate consequence from H61der's inequality 
2 2 

Ilxllp<llxll~llxlb~ for x~l]. 

Now from (1.3) we obtain 

2 og - + 1  ~ og - + 1  P~ 
Ck(il,p)~-~ r ] ~s  , (2.4) 

1 < p < 2 .  It remains to estimate Ck(Up). Since the dual l~, of l~ has got a (Rade- 
macher) type 2 constant r2(17~, ) with 

(cf. [Ma-P]), Lemma 2.1 tells us that 

c~(Up) < a l /F  k-  ~/2 re2 (Up). 

In this situation we again go back to the original operator u: l] --* H by putting 

up=u ip, 1 

with ip, x : 17, ~ lq as the identity operator from l~ into l]. Because of 
1 

rc 2 (Up) < 7t 2 (u) II ip, 1 tl < n~ 1722 (u) 

the problem of estimating Ck(Up) finally reduced to the problem of estimating 
g2 (u). Grothendieck's inequality 

rc~(u)~ CG Ilull 
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serves for this purpose, C~ being a universal constant (cf. I-L-P]). The result 
is 

1 

Ck(Up) < a CG ~ n ?~ k-   89 LI u II- (2.5) 

By the aid of (2.5) and (2.4) we now actually can estimate C2k(U), namely 

1 1 

c2k(u)<=aCCG~' log ~ + 1  p Pk-~Hull (2.6) 

according to (2.3). We still enlarge 

on the right-hand side of (2.6) into 

2 1 1 

thus simplifying the inequality (2.6) to 

2 

So far we have not disposed of p and p', respectively. Now we do by setting 

p '=4  lOg(k+ 1)>2 (2.8) 

which ensures 1 < p < 2 as required in connection with (2.4). The statement (2.8) 
2 

implies that the factor ( k +  1)g on the right-hand side of (2.7) appears as the 

universal constant 

while 1/~ gives rise to the desired logarithmic term 
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This way  we reach the stage 

C 2 k ( U ) < R V e a C C ~  k Ilulb, (2.9) 

which at  once implies the desired inequal i ty  by passing f rom 2 k to k. [ ]  
The  inequali ty (2.2) of  T h e o r e m  2.2 possesses a l ready in germ a refinement 

which we state in the next  theorem.  

Theorem 2.3. (i) Let  u be an operator f rom l 7 into a Hilbert space H. Then (log/ + 1/)lj2 
Ck +,,- 1 (U) < C k dm (u) (2.10) 

for  1 < k, m < n, n = 1, 2 . . . . .  where C > 0 is a universal constant. 
(ii) Let  v be an operator f rom a Hilbert space H into l"~. Then 

(2.11) 

for  1 < k, m < n, n = 1, 2, . . . ,  where C > 0 is a universal constant. 

Proo f  To check the inequal i ty  (i) we assume that  w: l ] ~ H  is an ope ra to r  
with r ank  w < m. Then  

c~ + . _  1 (u) < c~ (u - w) + cm (w) = c~ (u - w), 

since c , , (w)= 0. Apply ing  T h e o r e m  2.2 to the ope ra to r  u - w  we arrive at  

c k + m - l ( u ) < = c k ( u - - w ) < C  Jlu-wlP 

for any  w: l] ~ H  with r ank  (w)<m.  This a l ready implies the first assert ion 
since for  opera to rs  on l] the K o l m o g o r o v  number s  and  a p p r o x i m a t i o n  numbers  
coincide, 

din(u) = a,. (u) = inf{ II u -  w II: r ank  (w) < m}, 

(cf. [Pie]) .  The  second inequal i ty  of  the t heo rem can be immedia te ly  checked 
f rom the first one with the aid of  the dual i ty  relat ions 

dk+.,- , (V)=Ck+,,- l(V*) and c,.(v)=dm(v*) 

which are consequences  of  L indens t rauss -Rosen tha l ' s  principle of  local reflex- 
ivity (cf. [Pie]).  [ ]  

Concern ing  en t ropy  number s  we m a y  give the following inequalities. 
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Corollary 2.4. (i) Let  u be an operator from l] into a Hilbert space H. Then 

ek(U)<C k Ilull (2.12) 

for  1 < k < n ,  n=  1, 2, ..., where C > 0  is a universal constant. 
(ii) Let v be an operator f rom a Hilbert space H into l"~. Then 

ek (v) < C Ib v II, 
\ k 

(2.13) 

for 1 ~ k <- n, n = 1, 2 . . . . .  where C > 0 is a universal constant. 

Proof. The inequalities follow immediately from the corresponding inequalities 
of Theorem 2.3 by applying Lemma 1.3. [] 

Remark. 1) The inequality (i) of Corollary 2.4 appears as a special case of an 
inequality in [C.2] for operators from l] with values in a Banach space of 
type p. 

2) A recent result of Tomczak-Jaegermann [To] on duality of entropy 
numbers states that actually (i) and (ii) of Corollary 2.4 are equivalent. 

3) The estimates of Corollary 2.4 are sharp as can be seen from the following 
result of Schfitt [S] which states that for the identity operator i from l] into 
l~ the expression 

gives an exact description for the behaviour of 

ek(i:l~ ~ l~ )  for l<_k<n,  

1/2 / 

n = l , 2  . . . . .  

Finally, in the remaining part of this section we shall show that the estimate 
in Theorem 2.2 is the best possible for identity operators from l] into l~. We 
show that the previous expression for entropy numbers even gives an exact 
description for the behaviour of the Gelfand numbers Ck(i: l] ~ 1"2). This fact 
has been proved by Garnaev and Gluskin [G-G]. One side of the inequality 
already appeared in (1.3). Now our proof of the opposite inequality is different. 

Corollary 2.6. (Garnaev/Gluskin). Let i: l] ~1"2 be the identity operator f rom 
l~ into l~. Then 

min 

for 1 < k < n, n = 1, 2 . . . . .  Co, C1 > 0 are universal constants. 
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Proof From (1.3) and the obvious estimate Ck(i)< ]Pill ~ 1 we at once conclude 
the estimate from above. To provide the estimate from below we insert the 
result of Schiitt [S], 

pomin / I<ek(i) (2.14) 

for iNk<n, n= 1,2 . . . . .  where p o > 0  is a universal constant. In particular we 
have 

Pl \ ~ ~ek(i ) for logn<k<n, (2.15) 

n = 1, 2 . . . . .  where p~ > 0  is a universal constant. Now we apply (1.10) and obtain 

(l(n))1/2 Pl k og ~ + 1  <kek(i)<p2 sup jcj(i). (2.16) 
l<=j<k 

k 
Hereafter we introduce a bound ~ for j, dividing the supremum with respect 
to j into two items 

sup j cj(i)'< sup j cj(i) + sup j cj(i). 
1 <-j<k 1 <j<~ ~<j<k 

(2.17) 

The first item on the right-hand side of this inequality is estimated by the 
aid of (1.3), namely 

/ /n \\1/2 
sup jcj(i)<C sup [ j l o g [ - + l ] ]  

l < j < ~  l--<j<~\ \ J  ,/1 

< C log + 1 

since x l o g ( n +  1) 

of 2 > 1 and 

is monotonously increasing for 1 < x <  n. Moreover, because 

~ - -+  1 < +1 
2 log 2 

we have 

= -- - 1 n sup jcj(i)<c(l+21~ o g ( ~ + l ) f / 2 .  
1-<j--_<~ 
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The second item on the right-hand side of (2.17) is enlarged by passing to 

sup jcj(i)~kc (i), 

Hence it follows 

from (2,16). So far we have not yet disposed of 2>  1. Now we do by demanding 

C P2 (1 + 2 l o g  ),]1 ]2 "( P l  

/ = 5 -  \ (2.19) 

Owing to lim 
). ~ cx) 

1 + 2 l o g  2 =0  the condition (2.19) can be satisfied for some 2 
2 

= 2 o >  1. Hence (2.18) enables us to state 

c[~l (i)--> 2@2 k for logn<k<n. 

Changing from [~-00] to k we may achieve with some new universal constant 

P3 > 0 the estimate 

Ck(i)~p3 k for logn<-k<-n. 

Obviously, with some universal constant P4 > 0, we have 

ca(i)>p,~ for l_<k_<logn. 

Altogether we arrive at the desired estimate from below, 

[] 

Remark. In [C-D] has been developed a general but elementary concept for 
proving new inequalities in the theory of absolutely summing operators, Actually 
by this concept one can show that the estimates from Theorem 2,2 as well 



494 B. Carl and A. Pajor 

as from Corollary 2.4 are even equivalent to the famous Grothendieck-inequality 
in the metric theory of tensor products. 

Recently, Theorem 2.2 has been successfully applied in [C-H-K] to give 
new insights into the theory of integral operators with values in C(X)  of all 
continuous functions over a compact metric space X. There one can find an 
interplay between entropy properties of the underlying compact metric space 
X and eigenvalues, approximation and entropy quantities of the integral opera- 
tor. 

3. Large subspaces of l~ and l~ 

In this section we study some properties of " large" subspace of 1% and l~ 
expressed in terms of volume ratio, Banach-Mazur distance and projection con- 
stants by using the result in Sect. 2. In particular we improve some results 
of Figiel and Johnson IF-J] and complement results of K6nig [K6].  

First of all we recall some definitions. Let X and Y be two Banach spaces. 
The Banach-Mazur distance is defined by 

d(X,  Y)=inf{ltulL Ilu -~ II} 
where the infimum runs over all isomorphism u: X ~ Y. 

Moreover, let X be an n-dimensional Banach space and let vol(.) be any 
volume measure on X. Then the volume ratio vr (X)  is defined by 

v r (X) = inf(vol (Bx)/vol (~)) 1/, 

where the infimum runs over all ellipsoids g contained in B x.  
We start our considerations with a sharp estimate for entropy numbers of 

operators from l~ into a Banach space of type p which is adapted from [C2, 
Proposition 1]. 

Lemma 3.1. Let  N = i, 2 . . . .  and v be an operator f rom INx into a Banach space 
X o f  type p, then 

ek (v) __< c tp(X)tt v II (3.1) 

for  k = 1, 2, . . . ,  N where c is a universal constant. 
Now the following result on Banach-Mazur distances will be an immediate 

consequence of this entropy estimate. 

Theorem 3.2. Let  X be an n-dimensional subspace of  l~ and E an n-dimensional 
Banach space. Then 

d(X ,  E) t v (E*)> c nl - 1 / P ( l o g ( l  + N ) )  - ~ + I/p (3.2) 

where c > 0 is a universal constant. 
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Proof  Let v: E --, X be any invertible ope ra to r  and let i be the natural  embedding  
f rom X into l~.  Then  owing to 

ek(idx,) = ek(i*) = ek(v* - 1 v* i*) 
_-< II v*-  1 II ek(v* i*) 

we gain f rom the easy inequali ty 

and  L e m m a  3.1, the es t imate  

o r  

2 - k/. < ek (idx,) 

1 
og + ~  

2 -k/" ~ c II v* - 111 ~ (g*) I I  v* i* II 

- 1 / p  

N o w  we clearly have  

Therefore  we obta in  

(vol(Bx)/vol(g))  TM > ( i /4a)  nl/Z(log(1 + N/n)-1/2 

for every ell ipsoid d ~ conta ined  in Bx,  which proves  (3.3). 

(vol(v(B"2))/vol( Bx)) 1/~ <= 2 e.(v). 

Put t ing k = n  and taking the inf imum over  all invertible opera to rs  on the left 
hand  side of  the last inequality, we conclude the desired est imates for the Banach-  
M a z u r  distance. 

The following theorem gives a sharp es t imate  on the vo lume ratio of  large 
euclidean section of l~ which improves  a result f rom I F -  J]. 

Theorem 3.3. Let X be an n-dimensional subspace of  l~. Then 

d(X,  1"2) > v r (X)  > a n 1/2 (log(1 + N/n) ) -  1/2 (3.3) 

where a is a universal constant. 

Proo f  Of course the inequali ty d(X ,  l"2)> v r(X)  is valid for every n-dimensional  
Banach  space. So we p rove  the second inequality. Let  v: l~---, X be an opera to r  
with Ilvll < 1 and let i: X ~ l~ be the embedding  map.  F r o m  corol lary  2.4 we 
get that  

e. (v) < 2 e, (iv) < 2 a n-  1/2 (log (1 + N/n)) 1/2. 
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Remarks. (1) The following example from [F-J]  shows that (3.3) is sharp. Let 
k > 1, m > 1 and let E be an m-dimensional subspace of l~ m which is 2-isomorphic 
to l~' (it is well-known that there exists such a space). Moreover  let X 
=EOoo. . .GooE be the loo direct sum of k copies of E. Let n = m k = d i m X  
and let N = k  5 m so that X c l~. Since d(E, l~')< 2 we have d(X, l~)<2 k 1/2 which 
show that the inequality (3.3) is sharp for n > log N. 

(2) The inequality 

d(X, P2) > a n 1/2 (log(1 + N/n))- 1/2 

in Theorem 3.3 was also recently obtained in [B-L-M] and by E.D. Gluskin. 
(3) As it is well-known from Santalo's inequality vr(X) vr(X*)<=d(X,l~2) 

_-__n 1/2. Therefore if X is an n-dimensional subspace of l~, then 

v r(X*) <= a(log(1 + N/n)) 1/2 

where a is a universal constant. 
(4) The inequality (3.3) is in some sense optimal for " r a n d o m "  subspaces 

of l~. Indeed from a result of Kashin [K],  we have that for N~-dimensional 
" r a n d o m "  subspaces E of IR N, 0 < c~ < 1, 

c l / / ~  E c~ BN2 c E n B~ c c(~) l ~ l o l o ~  E c~ B~ 

for some constants c > 0  and c(ct). 
(5) Let X be an n-dimensional Banach space and let A be a set of N points 

in the unit ball Bx of X. Then Lemma 3.1 immediately implies the following 
estimates: 

where c is a universal constant. It may be checked, that when X = l~, by choosing 
a suitable p, the latter estimate on the volume of the convex hull of A is optimal. 

Theorem 3.,1. Let X be an n-dimensional subspace of  Pp, 2 < p < oe. Then 

d(X, In2) >= vr(X) >= ~ p  nl/2- x/P (N)  l/P 

where c > 0 is a universal constant. 

Proof. Let u: l ~  Y be any operator. Then from Lemma 2.1 and from (1.10) 
we get 

k 1/2 ek(U)<C z2(Y) rr2 (u*) 

Now let X be any n-dimensional subspace of l~, v: l~ ---, X an invertible operator  
and i: X --* lp N the embedding map. Then 

n 1/2 en(v)<2n 1/2 en(iv)<2 c z2 (l~) Ir2 (v* i*). 
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F r o m  Gro thendieck ' s  inequali ty we check 

~2(V* i*) ~/r2(V* i* idl,p,)Ilidp, 1 II 
<c' N lip 1Iv* i* idl,p, [I <c' N lip tl vlt. 

Consequent ly ,  owing to r2 (l~)< l/P, we obta in  

e,(v) <2ec '  ]fp n-  1/2 N1/p II v I[. 

Similarly as in T h e o r e m  3.3 we immedia te ly  get the assert ion of the theorem. 

Remark. (1) We ment ion  that  the inequali ty in Theo rem 3.4 is in a certain 
sense optimal .  Indeed,  by I F - L - M ]  there exists an m-dimensional  subspace E 
of l~ 'p/2 which is a - i somorphic  to 1~'. Moreover ,  let X = E O p . . .  GpE  be the lp 
direct sum of k copies of  E. Then dim X = m k = n .  Setting N = k  m p/2 we have 
X c l ~ .  Since d(E, l'~)<a we gain 

C hi~2 N -  1/pK=d(X, l"2)<a k 1/2-1/P=a n 1/2 N -  1/p. 

(2) A result of  Lewis [Le]  states that  for an n-dimensional  subspace X of 
lp u we always have 

d(X,  ln2)<=n 1/2- lip 

If we take 6 with 0 < 6 < 1 and  let n = [3 N] ,  then we have by T h e o r e m  3.4 

C 61/p hi~2_ 1 /pSd(X ,  ln2)<=nl/2_l/p 

Our  next theorem uses a result f rom [Pa]  based on a combina tor ia l  l emma  
of Sauer  and Vapn ik  and Cervonenkis .  First  of  all let us recall that  the Minkow-  
ski sum of two bodies  K1 and K 2 in IR" is defined by 

K1 + K2 = {x1 + x2; x l  ~K1, x2 EK2}.  

L e m m a  3.5 [Pa].  Let K c R N be a convex compac t  set satisfying 

K c [ - - 1 , 1 ]  N and VoI (K+t[ - -1 ,1]N)>2N( t+a)  N 

for some numbers t > 0 and 0 < a < 1. Then, for every e, > O, there exists a subset 
I of  {1, 2 . . . .  , N} with cardinality larger than c(t, a, e )N  such that the canonical 
projection of  K onto ~ i  contains  the ball a ( 1 - e ) [ - 1 ,  1] 1 where c(t, a, e ) > 0  
depends only on the numbers t, a, e. 

Remark. L e m m a  3.5 is in some sense sharp  and is a ref inement  of a result 
of  J. El ton  [-EL]. 

Theorem 3.6. Let X be an n-dimensional subspace of  l~ and set 6 = N/n. Then 
there exists a subset I of  {1,2 . . . . .  N} with cardinality larger than c(6)n such 
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that the quotient space X /E  is d(f)-isomorphic to I~ ral where E is the space 
{x=(x~ . . . . .  x .}EX:  x~=O for all iq~I} and where c(6)>0  and d(6) depend only 
o n  t~. 

Proof Let K = B x c [ - 1 ,  1] N and let i: X ~ l ~  be the embedding map. Set t 
= eN + ~ (0/4. This is easy to check that a ;  6> t > a2 ~ for some absolute constants 
a~, a 2 > l .  Moreover  let A = K  be a maximal subset of points which are 2t 

- distant in l%. Since it is a 2t - net in l~ with 2t<eN+~(i), the cardinality 
of A is larger than 2 N. Now the l~ balls of radius t, centered on the points 
of A are mutually disjoint, so that 

vol(K + t [ - 1,1] u) > 2u(2 t) N. 

Applying Lemma 3.5 with t=a  and e = l / 2 ,  say, we obtain a subset I of 
{ 1, 2 . . . . .  N} with cardinality larger than c(t, t, 1/2) n > C(t, t, 1/2) 6 n = c(6)n such 
that the canonical projection of K onto R t  contains the ball (t/2) [ -  1, i ]  I. Set 
E = { X = X l  . . . . .  xN)eX: x i = 0  for all ir then X/E is (t/2)-isomorphic to l~ rdl. 
This accomplishes the proof  because of a~- 6 > t > a~ 6. 

Remark. (1) F rom Theorem 3.3. we deduce that 

z 2 (X*) >= v r(K) >= a n 1/2 (log (1 + 6))- 1/2. 

Thereform from ([Pa],  Theorem 3.12) there exists a quotient space X/E  with 
dim (X/E) > C (6) n and which is d (6)-isomorphic to l~ where m = dim (X/E). Theo- 
rem 3.6 is more precise concerning the position of E. 

(2) The dual statement to Theorem 3.6 may be stated as follows: let E c R  N 
be an n-dimensional subspace and consider the orthogonal  projection P onto 
E as acting on l~. Moreover  denote by el . . . . .  eN the canonical basis of l~ and 
let Y=/~/Ker  P. Then there exists a subset I of {1, 2 . . . . .  N} with cardinality 
larger than c(6)n (6=N/n) such that the basis (Pei)i~ in Y is d(6)-isomorphic 
to the canonical basis of l]ardl. 

(3) Observe that from I-F-J] the large subspaces of l~ say for instance dim X 
>N/2, may not contain isomorphically l~ for m > C  N ~/2 where C is some uni- 
versal constant. This is in some sense optimal (see [B] ). 

We now give a result on the existence of badly complemented subspaces 
in large subspaces of l~. 

Theorem 3.7. Let X be a n-dimensional subspace of l~. Then there exists a subspace 
E of X with dim E = In/2] such that every projection of X onto E has norm 
larger than C nl/2(log(1 + N/n))-1/2 where c > 0 is a universal constant. 

Proof Let v: l"2~X be a John mapping, that is llvll <1  and nz(v-1)<n ~/2. 
Let 1 < k < n and let E c l~ be a subspace with codim E = k. Then 

(n-k)X/2<=(dimE)l/2=~z2(idE)<= IlvlEll 7~2(v-1)~_~ < I[VlEI] n 1/2. 

Hence 
(1 - k / n )  1/2 <Ca+, (v). (3.4) 
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For  a subspace F of  X, with dim F = k ,  define 2(F, X) to be the infimum II P II 
over all projection P of  X onto  F. Moreover  set 

2 = sup {2(F, X): F c X, dim F = k}. 

It is easy to check that  
Ck + 1 (V) < (1 + 2) dk + 1 (v). (3.5) 

N o w  a result f rom ( [M-P .2] )  appendix) states that  

Ck(V*) < a(n/ky/2 e~k(V*) (3.6) 

for some universal constants  a and 6 > 0. 
Therefore 

dk (v) = Ck (V*) < a (n/k) 1/2 e~k (V* i*) 

where i: X --* l~ is the embedding operator.  
Apply ing  Corol lary  2.4 and the Relat ion (3.4) and (3.5) we get 

(1 - k/n) 1/2 < c(1 + 2)(n/k) 1/2 k - 1/2 (log(1 + N/k))  1/2. 

Finally we choose k to conclude the proof. 

Remark.  Let X be an n-dimensional subspace of  l~ and let i: X ~ l~ be the 
embedding map. Then from Theorem 2.3 we have the following "ex t remal"  
proper ty :  for every opera tor  u: l 2 ~ X we have 

d2k(iU ) <= a k -  U2(log(1 Jr N/k))  1/2 ck(iu), 

k = 1, 2 . . . . .  n where a is a universal constant.  
"Ex t r ema l "  comes from the fact that  dk(V)~ k -  1/2 Ck(V ) is valid for any opera-  

tor. 
N o w  we carry over to large projections in l~ spaces. 

Theorem 3.8. Let  X be an n-dimensional subspace of  INp, 2 < p <  ~ .  Then there 
exists a subspace E o f  X with dim E = [n/2] such that every projection o f  X 
onto E has norm larger than 

C n l /2_ l /p {n~  1/p 

1 / i  ' 
where c > 0 is a universal constant. 

Proof. Let v: l~2~X be a John  mapping,  that  means Ikvll < 1  and rc2(v-1)=n 1/2. 
As in the p roof  of  Theorem 3.7 we get 

(1 - k/n) 1/2 < Ck + 1 (V) < ( 1 + 2) d k + 1 (v) 
< (1 + 2) Ck + 1 (V)* < (1 + 2) a(n/k) 1/2 eok(V* i*) 

where i is the embedding m a p  from X into lp N and 2 is defined as in the p roof  
of  Theorem 3.7, a and 6 coming from (3.6). 
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By Lemma 2.1 and (1.10) we get 

kt/2 ek(v * i*) <=c z2 (l~) ~z2(v* i* ) 

-< c]//p 7r2(v* i*). 

As in the proof of Theorem 3.4 we have 

Zrz(V* i*) <= c' N lip II v [I ~ c' N lip. 

Combining the previous estimates we arrive at 

( l+2)>acc ,  l//~ n~ \n/  
kl/2 - 1/p (k) 1/p. 

Putting k = In/2] we get the desired assertion. 

Remark. Let X be an n-dimensional subspace of lp u, 2 < p  < oo, then from a 
result of Lewis [Le] we have that for all subspaces E of X with the dimension 
l-n/2] there exists a projection P in X onto E such that 

IIP II ~ (n/2) 1/2- lip 

Remark. (1) In fact we may even give probabilistic versions of Theorem 3.7 
and 3.8. Namely, for all subspaces X of lp N, 2 < p <  0% with dimension [N/2] 
we have that with a "high probabil i ty" the projection in X of rank [N/4], 
say, have norm larger than c]//N, where c > 0 is a universal constant. This fact 
may be obtained by using a probabilistic version of inequality (3.6). 

(2) In contrast to the last remark Szarek [Sz] proved that there exists an 
n-dimensional Banach space X such that all projections in X of rank [an] 
have norm larger than c]//n, where a > 0 and c > 0 are universal constants. 

4. Large euclidean sections 

The problem of constructing large euclidean sections in finite dimensional Ban- 
ach spaces was investigated by V. Milman in ([M. 1], [M.2] ). In this framework 
we give new estimates for spaces with an unconditional basis and for finite 
dimensional subspaces of L 1. 

We first of all recall some definitions. Let X be an n-dimensional Banach 
space. The Rademacher cotype 2 constant of X, that we denote by C2(X) is 
defined as the smallest constant C such that 

( Z I] Xi II 2)1/2 ~ C ( A v e r a g e  II ~ ei xi II 2)1/2 
i> l  e i=+l  i> l  
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holds for every finite sequence (xi)i>:l = X .  A basis (el)i=1, 2 ...... of X is called 
1-uncondit ional  if 

~i ai ei : ~ ai ei 
i=1 i=1 

for every choices of  signs ei = + 1 and every scalars (ai)i: 1,2 . . . . . .  " 

When a Banach  space has an uncondi t ional  basis, Theo rem 1.2 will enable 
us to improve  the known  est imate on the distance of " large  sect ions" of X 
to euclidean spaces. 

Theorem 4.1. Let  X be an n-dimensional Banach space with a 1-unconditional 
basis. Then for  every k = 1, 2 . . . . .  n there exists a subspace E of  X with codim E = k 
such that 

d(E, 1"2- k) < a C 2 (X)(n/k) 1/2 (log(1 + n/k)) 1/2 

where a is a universal constant. 

Proof  To est imate the distance to Hi lber t  space, we first de termine a " g o o d "  
ope ra to r  u '  X --, l[. As in [Sz-To]  this will be ob ta ined  by the following r enorm-  
ing result f rom IF] .  There  exists a norm,  say [q" [11, on X such that  dual  n o r m  
II ~ II* is 2-convex (see IF ]  ) and such that  

[Ixbl~:llxlla~:aCz(X)llxll fo reve ry  x in X, (4.1) 

where a is a universal  constant .  Let X l be the space X equipped with the 
n o r m  H'III- F r o m  a result of  [Sz-To] ,  there exists a 1-uncondit ional  basis 
(el,  ez . . . . .  e,) of X1 such that  

Jail < ai ~ n  1/2 lai[ 2 (4.2) 
i=l  i=l  i 

for every scalars al  . . . . .  a , .  Let f l . . - f ,  be an o r t h o n o r m a l  basis of l~ and  define 
u: X ~ l~ by setting u(e i )=f / ,  i =  1, 2 . . . .  n. Clearly f rom (4.2) follows II u -  1 I1 < nl/2 
and 

n 2 

Average~i=_+l i~l ei u* (fi) <1. 

Apply ing  Theo rem 1.2, we deduce that  there exists a subspace E of X 1 
with codim E = k such tha t  

d (E, 1"2- k) < b (n/k) 1/2 (log (1 + n/k))'/2. 

T o  conclude,  recall that  f rom (4.1), X and X1 a r e  a C 2 ( X  ) - isomorphic .  

Remark. Est imates  for large euclidean sections were also ob ta ined  in [Pa-To.1]  
and [M-P.2]  in te rms of the Gauss ian  co type  2 constant .  Observe  that  in the 
s ta tement  of  T h e o r e m  4.1. the R a d e m a c h e r  co type  2 cons tan t  cannot  be replaced 

- -  n by the Gauss ian  one. This  can be seen by taking X - l ~ .  We also note  a result 
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in [M-P.2]. Namely, if for every k =  1, 2 . . . . .  n, there exists a subspace E of 
X, with codim E =  k such that d(E, 1"2 -k) < C(n/k) ~ for some constant a > 0 ,  then 
vr(X)  < a(a) C where a(7) depends only on a. 

In the next theorem we show that the estimate in Theorem 4.1 is also valid 
for subspaces of L ~. The method of the proof  is similar to that used for proving 
Theorem 2.2 and moreover  involves a result from [B-L-M]. 

Theorem 4.2. Let (g2, p) be a probability space and let X be an n-dimensional 
subspace of  Ll(f2, p). Then for every k =  1,2, . . . ,  n there exists a subspace E of 
X with codim E = k such that 

d (E, 1"2- k) < a (n/k) 1/2 (log (1 + n/k)) 1/2 (4.3) 

where a is a universal constant. 

Proof To prove the estimate (4.3) we may of course work with an isometric 
copy of X. For  this purpose we recall a result of Lewis [Le] which states 
that there exists a basis ~ol . . . . .  q~, of X such that, for every scalars a l ,  . . . ,  an, 

where 

a{/n= S [~ ai ~,,121~ d ,  
i=1 O 

4 =  q~2 and 11 q, llL,~)= l. 
i 

As in [B-L-M] we define a probabili ty v on f2 by d v = ~  dp. Then the mapping 
f ~  4~-~f  defines an isometry from X onto a subspace X 1 of L1(O, ~). Now 
it is sufficient to prove the statement for the isometric copy X 1. For this let 
1 < p < 2 and let Xp be the space X ~ equipped with the norm induced by Lp (f2, v). 
Moreover,  let ip: X1 ~ X p  be the identity operator  from X~ into Xp. As shown 
in [B-L-M] (Lemma 4.5) the 2-summing norm of i 2 : X ~ - ~ X 2  is subject to 
the following inequality 

ff2(i2) ~ al n 1/2 (4.4) 

where a x is a universal constant. 
Our aim is to prove the estimate 

Ck (i2) < a(n/k) 1/2 (log(1 + n/k)) x/z, k = 1, 2 . . . . .  n, (4.5) 

where a is a universal constant. 
This dearly will imply (4.3) since [I i21 I[ < 1. In view of (4.5) we start with 

a rough estimate: 

Ck (i2) < a2 (n/k) ~, k = 1, 2 . . . . .  n, (4.6) 
for some universal constant a2 and some ~ > 0. 

Indeed, since X c L 1(f2, v) has a bounded cotype 2 constant, from a result 
in [M-P-2],  

k 1/2 c k (i2) ~ a 2 (n/k)(log (1 + n/k)) n2 (i2), 
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k = 1, 2 . . . . .  n. Therefore  using (4.4) we see tha t  (4.6) holds  with ~ = 2, say. Let  
1 < p < 2 and  set p' = p / p -  1. By H61der 's  inequal i ty ,  we get 

Ck (iv) < a zip' (n /k)  2 "/p' < a2 (n /k)  2 "/P', 

k =  1, 2 . . . . .  n. N o w  from [P.1], zz(X*)<=(p') 1/2. 
N o w  we are in a pos i t ion  to  reproduce  the line of  the p r o o f  of  Theorem 

2.2. Indeed,  using T h e o r e m  1.1 and  the Re la t ions  (2.3), (2.1) we get 

c2 k (i2) < Ck (iv) C k (i2 iV 1) 

<= a3 (n/k) 2~'/p' z2 (X*)  n2 (i2 iv  1) k -  1/2 
< a4(p,)l/2 (n/k)1/2 + 2,/p', 

w h e r e  a2, a 3 , . . ,  d e n o t e  u n i v e r s a l  c o n s t a n t s .  
F i n a l l y  c h o o s i n g  p ' = 4 1 0 g ( l + n / k )  we a r r i v e  a t  t he  d e s i r e d  e s t i m a t e  (4.5) 

w h i c h  a c c o m p l i s h e s  t h e  p roof .  
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