
Homework 12
High-Dimensional Probability for Data Science, Fall 2023

Hints are in the back of this homework set.
As in the previous homework sets, C, C1, C2, . . . and c, c1, c2, . . . denote positive absolute
constants of your choice.

In the following problem we show that whenever two unit vectors u, v ∈ Rd are close to
each other, then so are Pu = uuT and Pv = vvT, which are the orthogonal projections
onto the lines spanned by these two vectors. We will also prove the converse: if the
projections Pu and Pv are close, then the vectors themselves must be close up to a
sign, i.e. u ≈ ±v. From this we derive a useful version of Davis-Kahan perturbation
theorem for the top eigenvectors.

1. Perturbation of eigenvectors

(a) Let x and y be arbitrary vectors in Rd. Compute the operator and Frobenius norms
of the matrix xyT. (Show your work!)
(b) Let u and v be unit vectors in Rd. Prove that there exists a sign s ∈ {−1, 1} such
that

1
2∥u − sv∥2 ≤ ∥uuT − vvT∥ ≤ 2∥u − v∥2 ,

where the norm in the middle is the operator norm.
(c) Deduce the following version of a Davis-Kahan theorem (see Lecture 20 for a general
statement). Let A and B be d × d symmetric matrices. Then there exist a sign
s ∈ {−1, 1} such that ∥∥v1(A) − sv1(B)

∥∥
2 ≤ 2∥A − B∥

λ1(A) − λ2(A)
where λk(A) denote the eigenvalues of A in the non-increasing order, and vk(A) denote
the corresponding unit eigenvectors, and similarly for B.

Consider a probability distribution in Rd with mean zero and covariance matrix
Σ = I + βuuT (1)

where β ∈ (0, 1) is a fixed number and u ∈ Rd is a fixed unit vector. This is a spike
model, a basic mathematical model of data with structure. The data sampled from this
distribution looks have variance 1 in all directions except one: in the direction of u the
variance is larger, making a “spike”. The direction of u is interpreted as a “signal” which
may contain some information about the data, while the other directions are noise. The
magnitude of β measures the strength of the spike, known as the signal-to-noise ratio
(SNR).
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In this problem, we will accurately estimate the “signal” u from a sample of n = O(d)
points X1, . . . , Xn. All we have to do is compute v1(Σn), the eigenvector corresponding
to the largest eigenvalue of the sample covariance matrix Σn = 1

n

∑n
i=1 XiX

T
i . Obvi-

ously, u can only be recovered up to a sign, and we will show that u ≈ ±v1(Σn) for
some choice of the sign.

2. Learning a spike model

(a) Check that the two largest eigenvalues of the spike covariance matrix Σ in (1) are
λ1(Σ) = 1 + β and λ2(Σ) = 1. Check that the top eigenvector is v1(Σ) = u.
(b) Assume that X1, . . . , Xn are i.i.d. subgaussian random vectors in Rd with mean
zero, covariance matrix Σ as in (1), and with with∥Xi∥ψ2

≤ 10. Let v = v1(Σn) be the
top eigenvector of the sample covariance matrix. Show that if n ≥ C2d/β2, then

min
s∈{−1,1}

∥u − sv∥2 ≤ 0.01

with probability at least 1 − 2e−d.

In Lecture 21, we developed matrix calculus that allowed us to work with d × d sym-
metric matrices as if they were numbers. In particular, we introduced the (partial)
semidefinite order1 and defined functions of matrices.2

Most facts about numbers transfer to matrices, but some do not. Part (a) of this
problem gives a matrix version of the following fact about scalars:

|x| ≤ t ⇐⇒ −t ≤ x ≤ t for x ∈ R.

Part (d) unexpectedly shows that the scalar fact
f : R → R increasing function, x ≤ y =⇒ f(x) ≤ f(y)

does not generalize to matrices.

3. Matrix calculus

In this problem, X and Y denote d × d symmetric real matrices.
(a) Prove that ∥X∥ ≤ t if and only if −tI ⪯ X ⪯ tI.
(b) Let f, g : R → R be two functions. Prove that f(x) ≤ g(x) for all x ∈ R satisfying
|x| ≤ K, then f(X) ⪯ g(X) for all X satisfying ∥X∥ ≤ K.
(c) Let f : R → R be an increasing function and X, Y be commuting matrices. Prove
that X ⪯ Y implies f(X) ⪯ f(Y ).
(d) Show by example that property (d) may fail for non-commuting matrices.

1To recall this definition, we write X ⪰ 0 if X is a symmetric positive semidefinite matrix. We say
that X ⪰ Y , or equivalently, Y ⪯ X, if X − Y ⪰ 0.

2To recall this definition, let f : R → R and let A =
∑d

i=1 λiuiu
T
i be a spectral decomposition of

A. We define f(A) =
∑d

i=1 f(λi)uiu
T
i .
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Hints

Hint for Problem 1.
(a) Both norms equal ∥x∥2 ∥y∥2.
(b) The second inequality is simpler. To prove it, add and subtract the cross term
uvT and use triangle inequality; this reduces the problem to computing the norms of
u(u − v)T and (u − v)vT; use the result of part (a) and the assumption that ∥u∥2 =
∥v∥2 = 1.
To prove the first inequality in (b), assume without loss of generality that ⟨u, v⟩ ≥ 0
(otherwise replace u by −u), let R = uuT − vvT and ε = ∥R∥. Then

∣∣∣uTRu
∣∣∣ ≤ ε

(why?); deduce from this that
∣∣1 − ⟨u, v⟩

∣∣ ≤ ε and thus
∥∥u − u⟨u, v⟩

∥∥
2 ≤ ε. Moreover,

∥Rv∥2 ≤ ε (why?); this means that
∥∥u⟨u, v⟩ − v

∥∥
2 ≤ ε. Add the two bounds using

triangle inequality to conclude that ∥u − v∥2 ≤ ε.
(c) Apply the general Davis-Kahan theorem for k = 1; then use the first inequality in
part (b) to pass from the projections to the eigenvectors.

Hint for Problem 2.
(b) Use the covariance estimation result from HW 11, Problem 3(a). Combine it with
the results of Problem 1(c) and 2(a) of the current homework.

Hint for Problem 3.
(a) Recall that the operator norm of X can be computed as the maximum of the
quadratic form uTXu over all unit vectors u ∈ Rd.
(c) Commuting symmetric matrices are simultaneously diagonalizable by an orthogonal
matrix, so we can write their spectral representations with the same eigenvectors.
(d) Find 2 × 2 matrices such that 0 ⪯ X ⪯ Y but X2 ̸⪯ Y 2.
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