
Homework 13
High-Dimensional Probability for Data Science, Fall 2023

Hints are in the back of this homework set.
As in the previous homework sets, C, C1, C2, . . . and c, c1, c2, . . . denote positive absolute
constants of your choice.

Next, we will prove a few basic facts about the operator norm. They will be helpful in
the further problems.

1. A few identities for the operator norm

(a) Let A be any matrix. Explain why the following identities hold:

∥A∥2 = λ1
(
AAT

)
= λ1

(
ATA

)
=

∥∥∥AAT
∥∥∥ =

∥∥∥ATA
∥∥∥ .

(b) Deduce from (a) that the operator norm is invariant under transposition, i.e.

∥AT∥ =∥A∥ .

(c) Let S be a d1 × d1 symmetric matrix, and T be a d2 × d2 symmetric matrix. Prove
that the (d1 + d2) × (d1 + d2) block diagonal matrix

Y =
[
S 0
0 T

]
satisfies ∥Y ∥ =∥S∥ ∨∥T∥ .

Here ∨ is a shorthand for maximum, i.e. a ∨ b = max(a, b).
(d) Let A be a d1 × d2 matrix, and B be a d2 × d1 matrix. Prove that the (d1 + d2) ×

(d1 + d2) block matrix

Z =
[

0 A
B 0

]
satisfies ∥Z∥ =∥A∥ ∨∥B∥ .

So far, we proved matrix concentration inequalities—Hoeffding and Bernstein–for sym-
metric matrices only. The symmetry was crucial in the proof: it was required in Lieb’s
trace inequality. However, Girko’s hermitization trick allows us to automatically ex-
tend all those results to nonsymmetric matrices. In fact, arbitrary rectangular d1 × d2
matrices B will be allowed.
Girko’s hermitization trick consists of replacing B by the (d1 + d2) × (d1 + d2) block
matrix

H(B) :=
[

0 B
BT 0

]
.

Then H(B) is obviously symmetric. Moreover, by Problem 1 parts (d) and (b), her-
mitization preserves the operator norm:

∥∥H(B)
∥∥ =∥B∥.
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Using hermetization trick, one can extend many results from symmetric to general
matrices. Let’s do this for the expected form of matrix Hoeffding inequality (Lecture 22,
p.3).

2. Matrix Hoeffding inequality for rectangular matrices

Let εi be independent Rademacher random variables, i.e. each εi takes values ±1
independently with probability 1/2. Let Bi be (fixed) d1 × d2 matrices. Prove that
with probability at least 0.9 we have the following bound:∥∥∥∥ n∑

i=1
εiBi

∥∥∥∥ ≤ Cσ
√

log(d1 + d2) where σ2 =
∥∥∥∥ n∑

i=1
BiB

T
i

∥∥∥∥ ∨
∥∥∥∥ n∑

i=1
BT

i Bi

∥∥∥∥ .

Some real-world problems require us to operate with huge matrices (for example, ma-
trices of interactions between hundreds of thousands of individuals). Some matrices
are so huge that computing their eigenvectors and eigenvalues is practically impossible.
In such cases, one can try to reduce the size of a matrix by subsampling: include only
a small random sample of rows or columns.
In the following problem, we consider a very tall N × d matrix A; think of N ≫ n. We
show how to approximately compute the singular values of A from a smaller matrix B
obtained by subsampling n = O(d log d) rows of A.

3. Subsampling a matrix

Let A be a d×N matrix whose columns Ai have the same length, i.e. ∥Ai∥2 = ∥Aj∥2 for
all i = 1, . . . , N . Consider the d×n matrix R obtained by including n randomly chosen
columns of A, where each time a column is chosen independently, with replacement, and
with the same probability 1/N . Let B =

√
N/n R. Show that, as long as n ≥ Cd log d

with a sufficiently large absolute constant C, the singular values satisfy
max

i=1,...,n

∣∣∣σi(A)2 − σi(B)2
∣∣∣ ≤ 0.1 σ1(A)2

with probability at least 0.9.

The general covariance estimation result (Lecture 23) guarantees that the covariance
of a d-dimensional distribution can be accurately estimated from a sample of size
n = O(d log d). You will now show that the logarithmic oversampling factor log d is in
general necessary.

4. Logarithmic oversampling is sometimes unavoidable

(a) Check that for any matrix A, all of its entries are bounded by the operator norm,
i.e.

max
i,j

|Aij| ≤∥A∥ .
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(b) Let e1, . . . , ed be the canonical basis of Rd. Consider a random vector X that is
uniformly distributed in the set {

√
d e1, . . . ,

√
d ed}, i.e. X takes each of the n

values
√

d ek with probability 1/d. Check that
Σ = EXXT = Id.

(c) Argue1 that, unless n > cd log d, the sample covariance matrix Σn has at least one
zero diagonal entry with probability at least 0.9.

(d) Conclude that if n < cd log d, we have ∥Σn − Σ∥ ≥ ∥Σ∥ with probability at least
0.9, so the covariance estimation fails.

TURN OVER FOR HINTS

1In solving part (c), you can assume without proof the following classical result in probability about
the coupon collector’s problem. Suppose each day we receive a coupon in mail. There are d types of
coupons, and each day’s coupon is one of these types independently with equal probability. Then,
with probability at least 0.9, we need at least cd log d days to obtain a full collection of all d types of
coupons.
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Hints for Problem 1
(a) For the first two identities, use the definition of the operator norm (Lecture 18).
For the next two identities, use the result of Homework 10, Problem 3(a).
(c) Note that the spectrum of Y is the union of the spectra of S and T . Then recall
the result of the result of Homework 10, Problem 3(a) again.
(d) Compute ZZT; it should be a block-diagonal matrix. Use parts (c) and (a) to
compute its norm and relate it to the norms of A and B.

Hints for Problem 2
Apply matrix Hoeffding inequality ∥∑n

i=1 εiAi∥ ≤ 10σ
√

log d (Lecture 22) for the Her-
miticized matrices, i.e. for Ai := H(Bi). As we noted, hermitization does not change
the norm, so ∥∑n

i=1 εiAi∥ = ∥∑n
i=1 εiBi∥. To compute σ2 =

∥∥∥∑n
i=1 εiA

2
i

∥∥∥, compute A2
i ,

sum up, and use Problem 1(c).

Hints for Problem 3
Consider a random vector X ∈ Rd that is uniformly distributed on the set of rows of
A, i.e. X takes values AT

k with probability 1/N for each k = 1, . . . , n. Check that Σ =
1
N

AAT and Σn = 1
n
RRT. Apply the general covariance estimation result (Lecture 23)

to get ∥AAT − BBT∥ ≤ 0.1 ∥AAT∥. Finally, use Weyl’s inequality (Lecture 20) and
recall how the singular values of A and B are related to the eigenvalues of AAT and
BBT.

Hints for Problem 4
(d) The matrix Σn has a zero diagonal entry by (c), but the corresponding entry of Σ
equals 1 by (b). The result now follows from (a).
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