
Homework 3
High-Dimensional Probability for Data Science, Fall 2023

Hints are in the back of the homework set.

In all problems of this homework as well as in the future homework sets, C, C1, C2, . . .
and c, c1, c2, . . . denote positive absolute constants of your choice. The rationale is that
we usually do not care about values of constants; we care more about how the result
depends on critical quantities like dimension, sample size, etc. Thus, whenever you see
C1, you can replace it any positive constant you like, for example 10 or 100.
Usually, you will find it easier to choose big values for C, C1, C2, . . . and small values for
c, c1, c2, . . .. For instance, you are free to choose C = 100 and c = 0.01, or even leave
the values of C and c unspecified as long as it is clear that they are absolute constants,
which do not depend on anything. For example C2 =

√
n is not a valid choice but

C2 = 1000000 is.

Binomial coefficients are often awkward to work with because they are expressed in
terms of factorials. One can approximately simplify factorials using Stirling’s formula,
but the result can still be a little complicated for practical purposes. In this problem,
we note a simple and popular two-sided bound on the binomial coefficients. Basically, it
says that

(
n
m

)
is approximately

(
n
m

)m
. The same approximation holds even for a more

complicated object – the partial sums of the binomial coefficients, which we denote(
n

≤ m

)
:=
(

n

0

)
+
(

n

1

)
+ · · · +

(
n

m

)
.

Problem 1 (Binomial coefficients)

Prove the following inequalities:(
n

m

)m

≤
(

n

m

)
≤
(

n

≤ m

)
≤
(

en

m

)m

for all integers m ∈ [1, n].

In Lecture 3, we established an upper bound on the volume of any polytope with
m vertices contained in the unit Euclidean ball B in Rn. We showed that the ratio
of the volumes of P and B is always bounded by (3

√
log(m)/n)n. In the next two

problems, we strengthen this bound by replacing m with m/n. This stronger bound
was first proved by Carl and Pajor [1] in 1988. Dafnis, Giannopoulos and Tsolomitis
[2] showed in 2009 that Carl-Pajor’s bound is optimal for the entire range of m and n
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by considering random polytopes. Congratulations: you are proving some serious and
relatively modern results!

Problem 2 (Covering numbers of polytopes)

Let P be a polytope with m vertices contained in the unit Euclidean ball B in Rn.
Prove that the covering numbers of P satisfy

N(P, ε) ≤ (C1mε2)1/ε2

for any ε such that mε2 ≥ 1. (You may assume for simplicity that 1/ε2 is an integer.)

Problem 3 (Volume of polytopes)

Let P be a polytope with m vertices contained in the unit Euclidean ball B in Rn.
Deduce that the volume of P satisfies

Vol(P )
Vol(B) ≤

C

√
log(em/n)

n

n

.

Berry-Eseen central limit theorem states that for any i.i.d (independent and identically
distributed) random variables X1, . . . , Xn with zero mean, unit variance, the normalized
sum Sn = 1√

n

∑N
i=1 Xi satisfies

sup
x∈R

∣∣P {Sn ≤ x} − P {g ≤ x}
∣∣ ≤ Cρ√

N
for all N ∈ N,

Here g ∼ N(0, 1) is a standard normal random variable and ρ = E|X1|3. In Lecture 4
we gave a heuristic explanation why the error O(1/

√
N) is optimal. Now let us prove

this formally.

Problem 4 (The error in CLT is at least 1/
√

N)

Find random variables Xi that satisfy the assumptions of the Berry-Eseen central limit
theorem, and for which

sup
x∈R

∣∣P {SN ≤ x} − P {g ≤ x}
∣∣ ≥ cρ√

N
for all N ∈ N.

Problem 5 (Heavy-tailed distributions)

Give an example of a random variable X that has finite expectation (i.e. EX < ∞)
but infinite variance (i.e. Var(X) = ∞).
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Hints

Hints for Problem 1.
To prove the upper bound, multiply both sides by the quantity (m/n)m, replace this
quantity by (m/n)k in the left side, and use the binomial theorem (a.k.a. Newton’s
binomial). To prove the lower bound, use the definition of the binomial coefficient to
express it as a product of m fractions; check that each fraction is lower bounded by
n/m.
Hints for Problem 2.
In Lecture 3 we proved a slightly weaker bound. Proceed similarly but with a sharper
bound on the cardinality of the set N . You can use without proof that the number
of ways to choose an unordered subset of k elements from a set of m elements equals(

m+k−1
k

)
. Simplify this binomial coefficient using Problem 1.

Hints for Problem 3.
in Lecture 3 we proved a slightly weaker bound. Proceed similarly. At the end, you
will need to optimize ε. If this becomes a challenging task, you may guess a good value
for ε instead. Recall that it was ε =

√
2 log(m)/n in Lecture 3; now you will easily

guess how to modify it.
Hints for Problem 4. Make each Xi take value 1 and −1 with probabilities 1/2,
and estimate P {g = 0} (this should be trivial) and P {Sn = 0} (express the latter
probability in terms of binomial coefficients, write them out via factorials, and use a
convenient form of Stirling’s formula). Now slightly perturb x around the zero value;
how does the perturbation affect the values of P {Sn ≤ x} and P {g ≤ x}?
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