HOMEWORK 3 HIGH-DIMENSIONAL PROBABILITY FOR DATA SCIENCE, FALL 2023

Hints are in the back of the homework set.

In all problems of this homework as well as in the future homework sets, C, C_1, C_2, \ldots and c, c_1, c_2, \ldots denote *positive absolute constants of your choice*. The rationale is that we usually do not care about values of constants; we care more about how the result depends on critical quantities like dimension, sample size, etc. Thus, whenever you see C_1 , you can replace it any positive constant you like, for example 10 or 100.

Usually, you will find it easier to choose big values for C, C_1, C_2, \ldots and small values for c, c_1, c_2, \ldots . For instance, you are free to choose C = 100 and c = 0.01, or even leave the values of C and c unspecified as long as it is clear that they are absolute constants, which do not depend on anything. For example $C_2 = \sqrt{n}$ is not a valid choice but $C_2 = 1000000$ is.

Binomial coefficients are often awkward to work with because they are expressed in terms of factorials. One can approximately simplify factorials using Stirling's formula, but the result can still be a little complicated for practical purposes. In this problem, we note a simple and popular two-sided bound on the binomial coefficients. Basically, it says that $\binom{n}{m}$ is approximately $\left(\frac{n}{m}\right)^m$. The same approximation holds even for a more complicated object – the partial sums of the binomial coefficients, which we denote

$$\binom{n}{\leq m} \coloneqq \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{m}.$$

PROBLEM 1 (BINOMIAL COEFFICIENTS)

Prove the following inequalities:

$$\left(\frac{n}{m}\right)^m \le \binom{n}{m} \le \binom{n}{\le m} \le \left(\frac{en}{m}\right)^m$$

for all integers $m \in [1, n]$.

In Lecture 3, we established an upper bound on the volume of any polytope with m vertices contained in the unit Euclidean ball B in \mathbb{R}^n . We showed that the ratio of the volumes of P and B is always bounded by $(3\sqrt{\log(m)/n})^n$. In the next two problems, we strengthen this bound by replacing m with m/n. This stronger bound was first proved by Carl and Pajor [1] in 1988. Dafnis, Giannopoulos and Tsolomitis [2] showed in 2009 that Carl-Pajor's bound is optimal for the entire range of m and n

by considering random polytopes. Congratulations: you are proving some serious and relatively modern results!

PROBLEM 2 (COVERING NUMBERS OF POLYTOPES)

Let P be a polytope with m vertices contained in the unit Euclidean ball B in \mathbb{R}^n . Prove that the covering numbers of P satisfy

$$N(P,\varepsilon) \le (C_1 m \varepsilon^2)^{1/\varepsilon^2}$$

for any ε such that $m\varepsilon^2 \ge 1$. (You may assume for simplicity that $1/\varepsilon^2$ is an integer.)

PROBLEM 3 (VOLUME OF POLYTOPES)

Let P be a polytope with m vertices contained in the unit Euclidean ball B in \mathbb{R}^n . Deduce that the volume of P satisfies

$$\frac{\operatorname{Vol}(P)}{\operatorname{Vol}(B)} \le \left(C\sqrt{\frac{\log(em/n)}{n}}\right)^n$$

Berry-Eseen central limit theorem states that for any i.i.d (independent and identically distributed) random variables X_1, \ldots, X_n with zero mean, unit variance, the normalized sum $S_n = \frac{1}{\sqrt{n}} \sum_{i=1}^N X_i$ satisfies

$$\sup_{x \in \mathbb{R}} |\mathbb{P} \{ S_n \le x \} - \mathbb{P} \{ g \le x \} | \le \frac{C\rho}{\sqrt{N}} \quad \text{for all } N \in \mathbb{N},$$

Here $g \sim N(0, 1)$ is a standard normal random variable and $\rho = \mathbb{E}|X_1|^3$. In Lecture 4 we gave a heuristic explanation why the error $O(1/\sqrt{N})$ is optimal. Now let us prove this formally.

PROBLEM 4 (THE ERROR IN CLT IS AT LEAST $1/\sqrt{N}$)

Find random variables X_i that satisfy the assumptions of the Berry-Eseen central limit theorem, and for which

$$\sup_{x \in \mathbb{R}} |\mathbb{P} \{ S_N \le x \} - \mathbb{P} \{ g \le x \} | \ge \frac{c\rho}{\sqrt{N}} \quad \text{for all } N \in \mathbb{N}.$$

PROBLEM 5 (HEAVY-TAILED DISTRIBUTIONS)

Give an example of a random variable X that has finite expectation (i.e. $\mathbb{E} X < \infty$) but infinite variance (i.e. $\operatorname{Var}(X) = \infty$).

References

- B. Carl, A. Pajor, Gelfand numbers of operators with values in a Hilbert space, Inventiones Mathematicae 94 (1988), 479–504.
- [2] N. Dafnis, A. Giannopoulos, A. Tsolomitis, Asymptotic shape of a random polytope in a convex body, Journal of Functional Analysis 257 (2009), 2820–2839.

TURN OVER FOR HINTS

HINTS

HINTS FOR PROBLEM 1.

To prove the upper bound, multiply both sides by the quantity $(m/n)^m$, replace this quantity by $(m/n)^k$ in the left side, and use the binomial theorem (a.k.a. Newton's binomial). To prove the lower bound, use the definition of the binomial coefficient to express it as a product of m fractions; check that each fraction is lower bounded by n/m.

HINTS FOR PROBLEM 2.

In Lecture 3 we proved a slightly weaker bound. Proceed similarly but with a sharper bound on the cardinality of the set \mathcal{N} . You can use without proof that the number of ways to choose an *unordered* subset of k elements from a set of m elements equals $\binom{m+k-1}{k}$. Simplify this binomial coefficient using Problem 1.

HINTS FOR PROBLEM 3.

in Lecture 3 we proved a slightly weaker bound. Proceed similarly. At the end, you will need to optimize ε . If this becomes a challenging task, you may guess a good value for ε instead. Recall that it was $\varepsilon = \sqrt{2\log(m)/n}$ in Lecture 3; now you will easily guess how to modify it.

HINTS FOR PROBLEM 4. Make each X_i take value 1 and -1 with probabilities 1/2, and estimate $\mathbb{P} \{g = 0\}$ (this should be trivial) and $\mathbb{P} \{S_n = 0\}$ (express the latter probability in terms of binomial coefficients, write them out via factorials, and use a convenient form of Stirling's formula). Now slightly perturb x around the zero value; how does the perturbation affect the values of $\mathbb{P} \{S_n \leq x\}$ and $\mathbb{P} \{g \leq x\}$?