
Homework 5
High-Dimensional Probability for Data Science, Fall 2023

Hints are in the back of the homework set.

As before, C, C1, C2, . . . and c, c1, c2, . . . denote positive absolute constants of your
choice. See more explanation in Homework 3.

The version of Chernoff’s inequality we proved in class provides a bound for the upper
tail on a sum SN of independent Bernoulli random variables, i.e. we showed that
P {SN ≥ t} is small for large t. Let us complement this result by bounding the lower
tail of SN , i.e. show that P {SN ≤ t} is small for small t.

1. The lower tail in Chernoff’s inequality

Let Xi be independent Bernoulli random variables with parameters pi. Consider their
sum SN = ∑N

i=1 Xi and denote its mean by µ = ESN . Prove that

P {SN ≤ t} ≤ e−µ
(

eµ

t

)t

for any 0 < t ≤ µ.

Chernoff’s inequality is remarkably sharp. It can be reversed up to a factor e in the
base of the exponent:

2. Reverse Chernoff inequality

Let SN be a binomial random variable with mean µ, that is SN ∼ Binom(N, µ/N).
Show that

P {SN ≥ t} ≥ e−µ
(

µ

t

)t

for any integer t ∈ {1, . . . , N} such that t ≥ µ.

The definition of Poisson distribution involves factorials, which are not very convenient
in computations. An alternative approach to such computations is provided by the
MGF method.

3. Tail bounds for Poisson distribution

Let X be a random variable that has the Poisson distribution with parameter µ.
(a) Compute the moment generating function (MGF) of X.
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(b) Use the MGF method to prove the following tail bounds:

P {X ≥ t} ≤ e−µ
(

eµ

t

)t

, t ≥ µ

P {X ≤ t} ≤ e−µ
(

eµ

t

)t

, 0 < t ≤ µ

P
{
|X − µ| ≥ t

√
µ
}

≤ 2 exp
(

−t2

3

)
, 0 ≤ t ≤ √

µ.

4. Boosting randomized algorithms

Imagine we have an algorithm for solving some decision problem. (For example, the al-
gorithm may answer the question: “is there a motorcycle in a given image?”). Suppose
each time the algorithm runs, it gives the correct answer independently with proba-
bility 1

2 + δ with some small δ ∈ (0, 1/2). In other words, the algorithm performs just
marginally better than a random guess.
To improve the performance, the following “boosting” procedure is often employed.
Run the algorithm N times and take the majority vote. Show that the new algorithm
gives the correct answer with probability at least 1 − 2 exp(−cδ2N). This is good
because the confidence rapidly (exponentially!) approaches 1 as N grows.

In class, I gave a flawed proof of the following observation, but we figured out how to
fix the flaw (see the hint). Let us make the proof right.

5. Irregularity of sparse random graphs

Consider a random graph G(N, p) whose expected degree d := (N − 1)p satisfies d <
c log N . Then, with probability at least 0.9, at least one vertex has degree at least 10d.

TURN OVER FOR HINTS
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Hint for Problem 1
Note that P {SN ≤ t} = P {−SN ≥ −t}. Proceed as in the proof of Chernoff’s inequal-
ity.

Hint for Problem 2
Since SN has a binomial distribution, the smaller probability P {SN = t} can be ex-
pressed using binomial coefficients. To lower bound the binomial coefficient, use
the result of Problem 1 from Homework 3. To handle one of the remaining terms
(1 − µ/N)N−t, check that the smaller quantity (1 − µ/N)N−µ is bounded below by e−µ.

Hints for Problem 3.
(a) The Taylor series for the exponential function will help you to simplify the compu-
tation.
(b) The same bounds were already proved for sums of Bernoulli random variables SN .
Proceed as in those proofs, but use part (a) whenever a bound on MGF is needed.

Hints for Problem 4.
Apply a convenient form of Chernoff’s inequality for SN being the number of the wrong
answers.

Hint for Problem 5.
As we noted in Lecture 8, it was wrong to say that the degrees deg(i) and deg(j)
are independent because of the possible edge connecting the vertices i and j. Try to
remove that obstacle as follows.
Split the set of N vertices into two subsets A and B, each having N/2 vertices. (Assume
N is even for simplicity.) For each vertex i ∈ A, define the quasi-degree deg′(i) to be
the number of edges connecting i to the vertices in B.
Next, check that (a) the quasi-degrees are independent; (b) the quasi-degrees are
bounded above by the true degrees; (c) there exists at least one vertex i ∈ A with
a disproportionally large quasi-degree. Part (c) can be obtained by modifying the
proof in Lecture 8.
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