
Homework 6
High-Dimensional Probability for Data Science, Fall 2023

Hints are in the back of the homework set.

As before, C, C1, C2, . . . and c, c1, c2, . . . denote positive absolute constants of your
choice. See more explanation in Homework 3.

Sparse random graphs tend to have lots of isolated vertices – vertices with no edges
incident to them. Let us show this by working out a simple but powerful first moment
method.

1. The first moment method

(a) Consider any events E1, . . . , EN . Let X denote the “counting random variable”,
which equals the number of events Ei that occur. Prove that

EX =
N∑
i=1

P(Ei).

(b) Consider a random graph G(N, p) whose expected degree d := (N − 1)p satisfies
d < c log N . Show that the expected number of isolated vertices is at least N0.99.

In data science, one often needs to handle a large number of random variables at the
same time. Suppose sample N random points from the standard normal distribution.
Then, on average, the entire sample lies within O(

√
log N) from the origin. This is

quite a good bound, since the logarithm grows slowly. You will now prove this bound
in a general framework, for all subgaussian distributions:

2. Maximum of subgaussians

Let X1, . . . , XN be sub-gaussian random variables, which are not necessarily indepen-
dent. Assume that ∥Xi∥ψ2 ≤ K for all i. Show that

E max
i=1,...,N

|Xi| ≤ CK
√

log N.
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3. Set Balancing

A number of players sign up to play at an amateur soccer club. Each player submits
the list of dates he is available to play during the next D days. The coach collects all
the lists and sees that at least C log D players will be available to play on each of the
D days. The coach now wants to give each player either a red or a green jersey. He
is hoping that on each day, roughly the same number of people will come in jerseys of
each color, so they can form two teams and play against each other. Prove that the
coach can indeed give out jerseys in such a way that on each of the D days there will
be between 49% and 51% players in red jerseys (and thus also between 49% and 51%
players in green jerseys).
Let us prove this result by a probabilistic method. Let the coach give each player a
red or green jersey independently with probability 1/2. Let us show that the desired
conclusion holds with positive probability. To do so, follow these steps:
(a) Denote by R ⊂ {1, . . . , N} the (random) set of players who received red jerseys.
Denote by Ad ⊂ {1, . . . , N} the (deterministic) set of players who are available on day
d, where d = 1, . . . , D. We are interested in the size of Rd := R ∩ Ad, the set of players
in red jerseys who come on day d. Note that |Rd| has binomial distribution.
(b) Use Chernoff inequality for small deviations (Lecture 7 p.3) to bound the probability
of the bad event where |Rd| deviates more than 1% from its mean.
(c) Use the union bound over days d = 1, . . . , D.

The classical laws of probability theory, such as the law of large numbers, demonstrate
the benefit of averaging independent observations Xi: the more observations we have,
the more confident we become about the mean of the distribution. The next problem
gives one more example of the benefit of averaging. Here you will find yourself in
an unfamiliar territory where almost nothing is assumed about continuous random
variables Xi. They may have infinite variance, and even their means do not need to
exist!

4. Small ball probabilities

Let X1, . . . , XN be non-negative independent random variables. Assume that the PDF
(probability density function) of each Xi is uniformly bounded by 1.

(a) Check that each Xi satisfies
P {Xi ≤ ε} ≤ ε for all ε > 0.

(b) Show that the MGF (moment generating function) of each Xi satisfies

E exp(−tXi) ≤ 1
t

for all t > 0.
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(c) Deduce that averaging increases the strength of (a) dramatically. Namely, show
that

P

 1
N

N∑
i=1

Xi ≤ ε

 ≤ (Cε)N for all ε > 0.

TURN OVER FOR HINTS
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Hints for Problem 1
(a) Express X as the sum of indicator random variables ∑N

i=1 1Ei
, and use linearity of

expectation.
(b) Consider the events Ei = {vertex i is isolated}. Show that P(Ei) ≥ N−0.01 if the
absolute constant c > 0 in the assumption is chosen sufficiently small. Then use the
first moment method from part (a).

Hints for Problem 2

Bound Emaxi|Xi| by E
( ∑n

i=1|Xi|p
)1/p

; move the expected value inside the sum (how?);
use the subgaussian bound on the moments (page 1 of Lecture 11); and finally optimize
in p, or just guess any value of p that works.

Hints for Problem 3
(a) You should get Rd ∼ Binom(|Ad| , 1

2).
(b) The probability bound you should get is 2 exp(−0.012 · 1

2 |Ad| /6). Use the lower
bound on |Ad| from the assumption to further bound this probability by < 1/D, if the
absolute constant C > 0 is chosen sufficiently large.
(c) Since the probability of each bad event from (b) is less than 1/D, the probability
of the union of D bad events is less than 1.

Hints for Problem 4
(b) Recall the formula for the expectation of a function of a random variable, in terms
of the probability density function.
(c) Rewrite the inequality ∑

Xi ≤ εN as ∑(−Xi/ε) ≥ −N and use the MGF method
as in the proof of Hoeffding’s inequality. Use part (b) to bound the MGF.
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