
Homework 7
High-Dimensional Probability for Data Science, Fall 2023

Hints are in the back of the homework set.

As before, C, C1, C2, . . . and c, c1, c2, . . . denote positive absolute constants of your
choice. See more explanation in Homework 3.

In Lecture 11, we discovered that the standard Gaussian random vector in Rn is very
likely to be near the sphere of radius

√
n. This “thin shell phenomenon” is not partic-

ular to the Gaussian distribution. You should be able to extend our argument to all
subgaussian distributions.

1. Thin shell phenomenon for subgaussian distributions

Consider a random vector X = (X1, . . . , Xn) in Rn whose all coordinates Xi are inde-
pendent random variables that satisfy

EXi = 0, Var(Xi) = 1, ∥Xi∥ψ2
≤ K.

Show that
P

{
0.99

√
n ≤∥X∥2 ≤ 1.01

√
n

}
≥ 1 − 2 exp(−c1n).

Our proof of Johnson-Lindenstrauss lemma utilized a Gaussian random matrix – a
matrix whose entries are N(0, 1) – to project the data onto a space of lower dimension.
Here you will check that a Bernoulli random matrix – a matrix with ±1 entries – works
as well. Bernoulli matrices take less memory to store – one bit per entry – so they are
preferred in practice. The result you are about to prove in part (b) was first established
by D. Achlioptas1 in 2003.

2. Johnson-Lindenstrauss lemma with binary coins

Let B be an n × d Bernoulli random matrix, i.e. a matrix whose entries are i.i.d. sym-
metric Bernoulli random variables (that is, each entry takes values ±1 with probability
1/2).
(a) Fix any unit vector z ∈ Rd. Prove that the random vector Bz satisfies the thin-shell
phenomenon:

P
{
0.99

√
n ≤∥Bz∥2 ≤ 1.01

√
n

}
≥ 1 − 2 exp(−c1n).

1D. Achlioptas, Database-friendly random projections: Johnson-Lindenstrauss with binary coins,
Journal of Computer and System Sciences, Volume 66, Issue 4, June 2003, Pages 671-687.
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(b) Let x1, . . . , xN be any fixed vectors in Rd. Let B be an n × d Bernoulli random
matrix, and set T = 1√

n
B. Prove that if n = C log N , then the map T : Rd → Rn

approximately preserves the pairwise geometry of the data set, namely that following
event holds with positive probability:

0.99 ∥xi − xj∥2 ≤ ∥T (xi) − T (xj)∥2 ≤ 1.01 ∥xi − xj∥2 for all i, j = 1, . . . , N. (1)

The most surprising feature of Johnson-Lindenstrauss lemma is its ability to compress
the data into such a small dimension, namely n = O(log N). One may wonder whether
this can be further improved: can one always compress the data into dimension n =
o(log N)? We will show that this is not the case: the logarithmic dimension is optimal.
Moreover, it is optimal even if we allow the compression map to be arbitrary and
possibly nonlinear.

3. No Johnson-Lindenstrauss into o(log N) dimension

(a) Let z1, . . . , zN be vectors in Rn that satisfy
1 < ∥zi − zj∥2 ≤ 2 for all distinct i, j ∈ {1, . . . , N}. (2)

Show that N ≤ 5n.
(b) Let n < 1

2 log N . Find vectors x1, . . . , xN in RN for which there does not exist any
map T : RN → Rn that satisfies (1).

Life in high dimensions is full of surprises. We know from linear algebra that the space
Rn can not accommodate more than n orthogonal vectors. However, Rn can accom-
modate exponentially many almost orthogonal vectors, for large n. This is another
manifestation of how much more room there is in high-dimensional worlds than in our
three-dimensional world.

4. There are exponentially many almost orthogonal vectors

(a) Prove that there exist unit vectors z1, . . . , zN in Rn such that N ≥ exp(cn) and∣∣∣⟨zi, zj⟩
∣∣∣ ≤ 0.01 for all distinct i, j ∈ {1, . . . , N}. (3)

(b) Show that if unit vectors z1, . . . , zN in Rn that satisfy (3), then N ≤ 5n.

TURN OVER FOR HINTS
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Hints for Problem 2
(a) Show that the random vector X = Bz satisfies the assumption of Problem 1. You
will need to use subgaussian Hoeffding inequality proved in Lecture 11.
(b) Argue like in the proof of Johnson-Lindenstrauss lemma in Lecture 12.

Hints for Problem 3
(a) Homework 2 Problem 5(a) implies that that all points zi lie in some ball of radius
2. Consider Euclidean balls centered at points zi and with radii 1/2. Show that these
balls are disjoint and lie in some Euclidean ball of radius 2+1/2. Thus the total volume
of those balls is bounded by the ball in which they lie. Now if you remember how the
volume scales in dimension n, you should be able to complete the proof.
(b) Choose x1, . . . , xN to be the standard basis of RN and let zi = T (xi).

Hints for Problem 4
(a) Let all coordinates of all vectors zij be independent symmetric Bernoulli random
variables multiplied by 1/

√
n. Fix a pair (i, j) and use Hoeffding’s inequality to show

that the bad event |⟨zi, zj⟩| > 0.01 occurs with exponentially small probability. Con-
clude by taking the union bound over all pairs (i, j). The logic of this argument is
similar to the proof of Johnson-Lindenstrauss lemma.
(b) Check that (3) for unit vectors implies (2).
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