HOMEWORK 8
HIGH-DIMENSIONAL PROBABILITY FOR DATA SCIENCE, FALL 2023

Hints are in the back of the homework set.

The Gram matriz of a system of vectors vy, ..., v, € R? is defined as the n x n matrix
G whose entries are the inner products between the vectors, i.e. Gi; = (v;,v;).

1. GRAM MATRICES

(a) Check that the Gram matrix G of any system of vectors is symmetric and positive
semidefinite.

(b) Conversely, prove that any n x n symmetric and positive semidefinite matrix G is
a Gram matrix of some system of vectors vy,...,v, in R"™.

Goemans-Williamson’s semidefinite relaxation algorithm (Lecture 13) yields a 0.878-
approximation of the max cut of a graph. A weaker result — a 0.5-approximation — can
be achieved by a trivial algorithm: a random cut.

Consider a graph G = (V, E). For each vertex v € V, flip a coin independently. If it
comes up heads, include the vertex in the subset 1/, otherwise include it in the subset
V5. Denote by E(V;, V3) the resulting cut — the set of edges that cross from Vi to V5.

2. A 0.5-APPROXIMATION OF MAX CUT

Prove that the random cut described above is at least 1/2 times the maximal cut:
1
E|E(Vy, Va)| > 51rnax|E(U1,U2)|

where the maximum is over all partitions V = U; U Us.




Here we will check a few versions of Grothendieck’s identity (Lecture 13).

3. SOME VERSIONS OF GROTHENDIECK’S IDENTITY

Let w,v be unit vectors in R% and ¢ be a standard normal random vector in R,
i.e.g ~ N(0,1;). Prove the following identities.

(a) E{u, g){v, ) = (u, v).

(b) Eu, g) sign (v, 9)) = y/2(u,0).

(c) Consider the random variable X,, = (u,g) — \/gsign ((u, g)), and similarly for X,.
Deduce from (a) and (b) that

5 Esign ((u,g)) sign (v, 9)) = (u,0) + E[X, X, (1)

Here we analyze a benchmark combinatorial problem (Lectures 12, 13): given numbers
a;;, find signs @y, ..., x, € {£1} that maximize the quadratic form >t j=1 @ijriry. This
problem is NP-hard. We will find a semidefinite relaxation (thus efficiently computable)
which gives an approximate solution to this problem.

Our solution is based on a “semidefinite” version of Grothendieck’s inequality. The
general Grothendieck’s inequality (Lecture 14) holds with constant 1.781. You will
improve it to 7/2 ~ 1.571 assuming the matrix (a;;) is symmetric and positive semi-
definite:
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More importantly, a solution (u;) to the semidefinite program (left hand side of (2)) can
be converted to an approximate solution (z;) of the combinatorial problem (right-hand
side of (2)) by randomized rounding. Previously, we only achieved this for Goemans-
Williamson’s max-cut relaxation (October 10, Lecture 17) but not for the original
problem (2).

The result you will prove was first established in the paper [1] of Alon and Naor from
2004. In just a month and a half of our course, you made it almost to the forefront of
contemporary research! Congratulations, and keep doing the great work.

4. A SEMIDEFINITE GROTHENDIECK INEQUALITY

Let A = [a;;]}';—, be a symmetric and positive semidefinite matrix, and let uy, ..., u,

be unit vectors in R%. Perform the randomized rounding of the vectors u;, i.e. let



x; = sign ((g, u;)), where g ~ N(0, I;). Using identity (1), show that
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This immediately implies (2), since if expectation is large, it must be large for some
realization of the random labels z;.

TURN OVER FOR HINTS



HINTS

HINTS FOR PROBLEM 1. There are several ways to prove (b) using linear algebra. For
example, consider the spectral decomposition G = 3", \ju;u] and define the matrix
V =" VAuu!. (Why can we take the square root?) Check that G = V2. Deduce
from this that G is the Gram matrix of the rows of V.

HINT FOR PROBLEM 2. For a given pair of vertices u,v € V', compute the probability
of the event D(u,v) = {u,v land in different subsets}. Argue that the cut equals
> (wv)eE LD(uw), Where 1p(,.) denotes the indicator random variable (it equals 1 is
D(u,v) holds and 0 otherwise). Then take expectation of the sum.

HINT FOR PROBLEM 3. Identities in (a) and (b) are proved in the paper [1, Section 5.1],
see the reference below. Don’t copy the computations from that paper verbatim; look

at them but then write down your argument yourself. You can use without proof the

value of the first absolute moment of the standard normal distribution: E|g| = /2.

™

HINT FOR PROBLEM 4. The argument is sketched in the paper [I, Section 5.1] (see
the reference below). But I think it would be easier for you to prove it yourself, as
follows. Substitute u = u;, v = w; into equality (1), multiply both sides by a;;, and
sum over all ¢, 7. The sum in the right hand side breaks into two sums; check that the
second one is nonnegative because the matrix (a;;) is positive semidefinite.
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