
Homework 8
High-Dimensional Probability for Data Science, Fall 2023

Hints are in the back of the homework set.

The Gram matrix of a system of vectors v1, . . . , vn ∈ Rd is defined as the n × n matrix
G whose entries are the inner products between the vectors, i.e. Gij = ⟨vi, vj⟩.

1. Gram matrices

(a) Check that the Gram matrix G of any system of vectors is symmetric and positive
semidefinite.
(b) Conversely, prove that any n × n symmetric and positive semidefinite matrix G is
a Gram matrix of some system of vectors v1, . . . , vn in Rn.

Goemans-Williamson’s semidefinite relaxation algorithm (Lecture 13) yields a 0.878-
approximation of the max cut of a graph. A weaker result – a 0.5-approximation – can
be achieved by a trivial algorithm: a random cut.
Consider a graph G = (V, E). For each vertex v ∈ V , flip a coin independently. If it
comes up heads, include the vertex in the subset V1, otherwise include it in the subset
V2. Denote by E(V1, V2) the resulting cut – the set of edges that cross from V1 to V2.

2. A 0.5-approximation of max cut

Prove that the random cut described above is at least 1/2 times the maximal cut:

E
∣∣E(V1, V2)

∣∣ ≥ 1
2 max

∣∣E(U1, U2)
∣∣

where the maximum is over all partitions V = U1 ∪ U2.
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Here we will check a few versions of Grothendieck’s identity (Lecture 13).

3. Some versions of Grothendieck’s identity

Let u, v be unit vectors in Rd, and g be a standard normal random vector in Rd,
i.e.g ∼ N(0, Id). Prove the following identities.
(a) E⟨u, g⟩⟨v, g⟩ = ⟨u, v⟩.

(b) E⟨u, g⟩ sign
(
⟨v, g⟩

)
=

√
2
π
⟨u, v⟩.

(c) Consider the random variable Xu = ⟨u, g⟩ −
√

π
2 sign

(
⟨u, g⟩

)
, and similarly for Xv.

Deduce from (a) and (b) that
π

2 E sign
(
⟨u, g⟩

)
sign

(
⟨v, g⟩

)
= ⟨u, v⟩ + E [XuXv] . (1)

Here we analyze a benchmark combinatorial problem (Lectures 12, 13): given numbers
aij, find signs x1, . . . , xn ∈ {±1} that maximize the quadratic form ∑n

i,j=1 aijxixj. This
problem is NP-hard. We will find a semidefinite relaxation (thus efficiently computable)
which gives an approximate solution to this problem.
Our solution is based on a “semidefinite” version of Grothendieck’s inequality. The
general Grothendieck’s inequality (Lecture 14) holds with constant 1.781. You will
improve it to π/2 ≈ 1.571 assuming the matrix (aij) is symmetric and positive semi-
definite:

max
ui∈Rd unit

n∑
i,j=1

aij⟨ui, uj⟩ ≤ π

2 · max
xi∈{±1}

n∑
i,j=1

aijxixj. (2)

More importantly, a solution (ui) to the semidefinite program (left hand side of (2)) can
be converted to an approximate solution (xi) of the combinatorial problem (right-hand
side of (2)) by randomized rounding. Previously, we only achieved this for Goemans-
Williamson’s max-cut relaxation (October 10, Lecture 17) but not for the original
problem (2).
The result you will prove was first established in the paper [1] of Alon and Naor from
2004. In just a month and a half of our course, you made it almost to the forefront of
contemporary research! Congratulations, and keep doing the great work.

4. A semidefinite Grothendieck inequality

Let A = [aij]ni,j=1 be a symmetric and positive semidefinite matrix, and let u1, . . . , un

be unit vectors in Rd. Perform the randomized rounding of the vectors ui, i.e. let
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xi = sign
(
⟨g, ui⟩

)
, where g ∼ N(0, Id). Using identity (1), show that

E

π

2 ·
n∑

i,j=1
aijxixj

 ≥
n∑

i,j=1
aij⟨ui, uj⟩.

This immediately implies (2), since if expectation is large, it must be large for some
realization of the random labels xi.

TURN OVER FOR HINTS
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Hints

Hints for Problem 1. There are several ways to prove (b) using linear algebra. For
example, consider the spectral decomposition G = ∑n

i=1 λiuiu
T
i and define the matrix

V = ∑n
i=1

√
λiuiu

T
i . (Why can we take the square root?) Check that G = V 2. Deduce

from this that G is the Gram matrix of the rows of V .

Hint for Problem 2. For a given pair of vertices u, v ∈ V , compute the probability
of the event D(u, v) = {u, v land in different subsets}. Argue that the cut equals∑

(u,v)∈E 1D(u,v), where 1D(u,v) denotes the indicator random variable (it equals 1 is
D(u, v) holds and 0 otherwise). Then take expectation of the sum.

Hint for Problem 3. Identities in (a) and (b) are proved in the paper [1, Section 5.1],
see the reference below. Don’t copy the computations from that paper verbatim; look
at them but then write down your argument yourself. You can use without proof the
value of the first absolute moment of the standard normal distribution: E|g| =

√
2
π
.

Hint for Problem 4. The argument is sketched in the paper [1, Section 5.1] (see
the reference below). But I think it would be easier for you to prove it yourself, as
follows. Substitute u = ui, v = uj into equality (1), multiply both sides by aij, and
sum over all i, j. The sum in the right hand side breaks into two sums; check that the
second one is nonnegative because the matrix (aij) is positive semidefinite.
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