Hints are in the back of the homework set.

The Gram matrix of a system of vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$ is defined as the $n \times n$ matrix G whose entries are the inner products between the vectors, i.e. $G_{i j}=\left\langle v_{i}, v_{j}\right\rangle$.

1. Gram matrices

(a) Check that the Gram matrix G of any system of vectors is symmetric and positive semidefinite.
(b) Conversely, prove that any $n \times n$ symmetric and positive semidefinite matrix G is a Gram matrix of some system of vectors v_{1}, \ldots, v_{n} in \mathbb{R}^{n}.

Goemans-Williamson's semidefinite relaxation algorithm (Lecture 13) yields a 0.878 approximation of the max cut of a graph. A weaker result - a 0.5 -approximation - can be achieved by a trivial algorithm: a random cut.
Consider a graph $G=(V, E)$. For each vertex $v \in V$, flip a coin independently. If it comes up heads, include the vertex in the subset V_{1}, otherwise include it in the subset V_{2}. Denote by $E\left(V_{1}, V_{2}\right)$ the resulting cut - the set of edges that cross from V_{1} to V_{2}.

2. A 0.5-APPROXIMATION OF MAX CUT

Prove that the random cut described above is at least $1 / 2$ times the maximal cut:

$$
\mathbb{E}\left|E\left(V_{1}, V_{2}\right)\right| \geq \frac{1}{2} \max \left|E\left(U_{1}, U_{2}\right)\right|
$$

where the maximum is over all partitions $V=U_{1} \cup U_{2}$.

Here we will check a few versions of Grothendieck's identity (Lecture 13).

3. Some versions of Grothendieck's identity

Let u, v be unit vectors in \mathbb{R}^{d}, and g be a standard normal random vector in \mathbb{R}^{d}, i.e. $g \sim N\left(0, I_{d}\right)$. Prove the following identities.
(a) $\mathbb{E}\langle u, g\rangle\langle v, g\rangle=\langle u, v\rangle$.
(b) $\mathbb{E}\langle u, g\rangle \operatorname{sign}(\langle v, g\rangle)=\sqrt{\frac{2}{\pi}}\langle u, v\rangle$.
(c) Consider the random variable $X_{u}=\langle u, g\rangle-\sqrt{\frac{\pi}{2}} \operatorname{sign}(\langle u, g\rangle)$, and similarly for X_{v}. Deduce from (a) and (b) that

$$
\begin{equation*}
\frac{\pi}{2} \mathbb{E} \operatorname{sign}(\langle u, g\rangle) \operatorname{sign}(\langle v, g\rangle)=\langle u, v\rangle+\mathbb{E}\left[X_{u} X_{v}\right] \tag{1}
\end{equation*}
$$

Here we analyze a benchmark combinatorial problem (Lectures 12, 13): given numbers $a_{i j}$, find signs $x_{1}, \ldots, x_{n} \in\{ \pm 1\}$ that maximize the quadratic form $\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}$. This problem is NP-hard. We will find a semidefinite relaxation (thus efficiently computable) which gives an approximate solution to this problem.

Our solution is based on a "semidefinite" version of Grothendieck's inequality. The general Grothendieck's inequality (Lecture 14) holds with constant 1.781. You will improve it to $\pi / 2 \approx 1.571$ assuming the matrix $\left(a_{i j}\right)$ is symmetric and positive semidefinite:

$$
\begin{equation*}
\max _{u_{i} \in \mathbb{R}^{d}} \sum_{\text {unit }} \sum_{i, j=1}^{n} a_{i j}\left\langle u_{i}, u_{j}\right\rangle \leq \frac{\pi}{2} \cdot \max _{x_{i} \in\{ \pm 1\}} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} . \tag{2}
\end{equation*}
$$

More importantly, a solution $\left(u_{i}\right)$ to the semidefinite program (left hand side of (2)) can be converted to an approximate solution $\left(x_{i}\right)$ of the combinatorial problem (right-hand side of (2)) by randomized rounding. Previously, we only achieved this for GoemansWilliamson's max-cut relaxation (October 10, Lecture 17) but not for the original problem (2).
The result you will prove was first established in the paper [1] of Alon and Naor from 2004. In just a month and a half of our course, you made it almost to the forefront of contemporary research! Congratulations, and keep doing the great work.

4. A semidefinite Grothendieck inequality

Let $A=\left[a_{i j}\right]_{i, j=1}^{n}$ be a symmetric and positive semidefinite matrix, and let u_{1}, \ldots, u_{n} be unit vectors in \mathbb{R}^{d}. Perform the randomized rounding of the vectors u_{i}, i.e. let
$x_{i}=\operatorname{sign}\left(\left\langle g, u_{i}\right\rangle\right)$, where $g \sim N\left(0, I_{d}\right)$. Using identity (1), show that

$$
\mathbb{E}\left[\frac{\pi}{2} \cdot \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}\right] \geq \sum_{i, j=1}^{n} a_{i j}\left\langle u_{i}, u_{j}\right\rangle .
$$

This immediately implies (2), since if expectation is large, it must be large for some realization of the random labels x_{i}.

TURN OVER FOR HINTS

Hints

Hints for Problem 1. There are several ways to prove (b) using linear algebra. For example, consider the spectral decomposition $G=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{\top}$ and define the matrix $V=\sum_{i=1}^{n} \sqrt{\lambda_{i}} u_{i} u_{i}^{\top}$. (Why can we take the square root?) Check that $G=V^{2}$. Deduce from this that G is the Gram matrix of the rows of V.

Hint for Problem 2. For a given pair of vertices $u, v \in V$, compute the probability of the event $D(u, v)=\{u, v$ land in different subsets $\}$. Argue that the cut equals $\sum_{(u, v) \in E} \mathbf{1}_{D(u, v)}$, where $\mathbf{1}_{D(u, v)}$ denotes the indicator random variable (it equals 1 is $D(u, v)$ holds and 0 otherwise). Then take expectation of the sum.

Hint for Problem 3. Identities in (a) and (b) are proved in the paper [1, Section 5.1], see the reference below. Don't copy the computations from that paper verbatim; look at them but then write down your argument yourself. You can use without proof the value of the first absolute moment of the standard normal distribution: $\mathbb{E}|g|=\sqrt{\frac{2}{\pi}}$.

Hint for Problem 4. The argument is sketched in the paper [1, Section 5.1] (see the reference below). But I think it would be easier for you to prove it yourself, as follows. Substitute $u=u_{i}, v=u_{j}$ into equality (1), multiply both sides by $a_{i j}$, and sum over all i, j. The sum in the right hand side breaks into two sums; check that the second one is nonnegative because the matrix $\left(a_{i j}\right)$ is positive semidefinite.

References

[1] N. Alon, A. Naor, Approximating the cut-norm via Grothendieck's inequality. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pp. 72-80. 2004. Click to download the paper.

