
Homework 9
High-Dimensional Probability for Data Science, Fall 2023

Hints are in the back of the homework set.

The first problem is about an arbitrary set of n unit vectors in Rn, i.e. vectors x1, . . . , xn

satisfying ∥xi∥2 = 1 for all i. Their sum x1 + · · · + xn has norm at most n, due to the
triangle inequality. The bound n is obviously optimal, and is attained if all vectors vi

are the same. However, the sum can be made much smaller by carefully selecting the
signs for the vectors xi.

1. Balancing vectors

Let x1, . . . , xn be an arbitrary set of unit vectors in Rn. Prove that there exist
ε1, . . . , εn ∈ {−1, 1} such that

∥ε1x1 + · · · + εnxn∥2 ≤
√

n.

As we learned in class, the kernel method in machine learning consists of replacing
the inner product ⟨x, y⟩ on Rd with a suitable function K(x, y). Not all functions are
allowed, and Mercer’s theorem (Lecture 16) gives a necessary and sufficient condition:
K must be a kernel. Recall that a kernel is a function K : Rd × Rd → R such that,
for any number n ∈ N and vectors x1, . . . , xn ∈ Rd, the n × n matrix

[
K(xi, xj)

]n

i,j=1
is

symmetric and positive semidefinite.
Mercer’s condition is not always convenient to check. It might be simpler to build
kernels from “building blocks”: simple kernels. Here you will verify some building
rules.

2. How to build a kernel

Let K(x, y) and M(x, y) be kernels. Show that all of the following are kernels, too:
(a) aK(x, y) + bM(x, y), where a, b > 0 are constants;
(b) K(x, y)p where p ∈ N;
(c) P (K(x, y)) where P is a polynomial with nonnegative coefficients.
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A low-rank matrix is an analog of low-dimensional data in the matrix world. It is
therefore not surprising that many algorithms in linear algebra work faster for low-
rank matrices. So it may be wise to replace a given matrix A by its best low-rank
approximation Ak before we put it into a numerical algorithm. How well can one
approximate an arbitrary matrix by a low-rank matrix? In this problem, we will prove
bounds that are optimal in general.

3. Low-rank approximation

Consider an arbitrary n × m matrix A. Let σ1(A) ≥ σ2(A) ≥ · · · ≥ σr denote the
singular values of A, where r = min(n, m). Let k ≤ r be any nonnegative integer.
(a) Show that there exists a matrix Ak of rank k such that

∥A − Ak∥ ≤ σk+1(A).

(b) Show that there exists a matrix Ak of rank k such that

∥A − Ak∥ ≤ 1√
k + 1

∥A∥F .

4. Semidefinite relaxations of combinatorial problems

In Lecture 16, we studied the following NP-hard combinatorial problem. Given an
n × m matrix A = (aij), find a maximum of the function

f(x, y) =
∑
i,j

aijxiyj

over all sign vectors x = (x1, . . . , xn) ∈ {−1, 1}n and y = (y1, . . . , ym) ∈ {−1, 1}m.
This problem can be approximately relaxed to a semidefinite program, which can always
be solved in polynomial time. In class, we did this only for n = m and xi = yi; now
we will work in full generality.
Consider maximizing the function

g(U, V ) =
∑
i,j

aij⟨ui, vj⟩

over all choices of unit vectors ui and vj in Rd.
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(a) (Accuracy) Show that for every d, the maximum of g(U, V ) is within a constant
factor of the the maximum of the maximum of f(x, y).
(b) (Efficiency) Choose d = n + m and express maximizing g(U, V ) as a semidefinite
program.1

TURN OVER FOR HINTS

1A general form of a semidefinite program is the following: maximize g(Z) over the set of positive
semidefinite matrices Z satisfying hi(Z) = bi for all i = 1, . . . , N . Here g and hi are given linear
functions from Rd×d → R, and bi are given real numbers. There exist many commercial and open-
source solvers for programs of this type.
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Hints

Hints for Problem 1.
Make use of a probabilistic method. Choose εi at random and independently, and com-
pute E∥ε1x1 + · · · + εnxn∥2

2. Additivity of variance can help (Homework 2, Problem 4).

Hints for Problem 2.
You may use without proof any and all standard facts about positive semidefinite
matrices. Part (c) should follow from (a) and (b).

Hints for Problem 3.
(a) Consider a truncated singular value decomposition Ak = ∑

i>k σiuiv
T
i .

(b) Express the Frobenius norm of A via the singular values, then use part (a). This
will reduce the problem to proving the inequality sp ≤ 1

p

∑r
i=1 si for any sequence of

nonincreasing numbers si and any p ≤ r. (In our case, si = σi(A)2 and p = k + 1.)
The inequality can be proved e.g. by contradiction.

Hints for Problem 4.
(a) Recall Grothendieck’s inequality.
(b) Let U be n×d matrix whose rows are uT

i , and let V be m×d matrix whose rows are
vT

j . Note that f(x, y) = xTAy, and check that a similar inequality holds for g, namely
g(U, V ) = tr(UTAV ). Next, use the following so-called “hermitization trick”: consider
the d × d symmetric matrix H =

[
0 A

AT 0

]
and the d × d matrix R =

[
U
V

]
. Check that

RTHR = UTAV + V TATU , and conclude that g(U, V ) = 1
2 tr(RTHR) = 1

2 tr(HRRT).
Now since in this problem ui and vj are arbitrary unit vectors, Z = RRT is a Gram
matrix of any system of n + m unit vectors in Rd. Thus Z is an arbitrary positive
semidefinite matrix with unit diagonal entries (why?). This will allow you to express
the problem as maximizing 1

2 tr(HZ) over all positive semidefinite matrices Z with unit
diagonal entries.
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