LECTURE 36

Goal: understand generalization. Now much training data is needed?
(Combinatorics (vc dimension)) (Nachine learning)
Probability Concentration Symmetrization Combinatorial ingredient:
(Sommetrization) & Combinatorial ingredient:
Lem [Pajor 85] & finite class of Boolean Functions & on X,
$ \mathcal{H} \leq \#(\text{subsets of } x \text{ shattered by } \mathcal{H})$
Convention: \$\phi\$ is shattered by \$\psi\$ nonempty \$\mathbb{R}\$.
Proof WloG, N= {1,, n}. Denote by sh (K) the family
of all subsets of X shattered by H. To prove
$ \mathcal{U} \leq \mathcal{S}h(\mathcal{H}) ,$
a partition il according to the value at point n, i.e.
$\mathcal{H} = \mathcal{H}_0 \sqcup \mathcal{H}_1$
where $f(s) = \{ h \in \mathcal{H} : h(n) = 0 \}$ and $f(s) = \{ h \in \mathcal{H} : h(n) = 1 \}$
. I subset {i,, -, id} < X shattered by the or R, is also
shattered by fl. Thus
$ sh(H) \ge sh(N_0) + sh(N_1) $
domain = $\{1,,n-1\}$ · Iterate: partition the and H_q according to the value $h(n-1)$:
(3) sh(sloo) + sh(sloo) + sh(kloo) + sh(kloo) (2)
shatters one set \$ (2) St!
shatters one set \$ · · · (>) Ill

·MISTAKE: we double counted in (*)
He sets that are shattered
by both sho and shy

· FIX: Suppose (i1, ..., id) is chattered by Both the and H1=>

y label assignment y, ~, y ∈ {0,1}

 $\exists h \in \mathcal{H}_{o}$: $h(i_1) = y_{i_1}, \dots, h(i_d) = y_{i_d}, h(n) = 0$

 $\exists g \in \mathcal{H}_1$: $g(i) = y_i, ..., g(i) = y_i$, g(n) = 1

>> \lin,..., id, n3 is shattered by \(\mathbb{H} = \mathbb{H}_0 \colors \) erg

This set is NOT shattered by either flo or flo it was NOT counted before

• => If set that we double counted, we find a set we never counted

=> (*) is true Proceed as before. QED

By def of vc dimension,
$$\forall$$
 subset shattered by \mathcal{H} has cardinality \leq vc(\mathcal{H}) =: d . So Pajor's Lemma yields
$$|\mathcal{H}| \leq \#(\text{subsets of }\{1,...,n\} \text{ with card. } \leq d) \leq \sum_{k=0}^{d} \binom{n}{k}.$$

Cor (Saver-Shelah lemma) let
$$K$$
 be a class of Boolean hunchions on an n -point domain. Then
$$|K| \leq \sum_{k=0}^{d} \binom{n}{k} \text{ where } d=vc(M)$$

Examples

(a) Integer intervals:
$$\mathcal{H} = \{ \{ \{ \{ \{ \} \} \} \} \}$$

$$VC(\mathcal{H}) = 2 \text{ (as in the previous lecture for real intervals)}$$

$$|\mathcal{H}| = 1 + n + {n \choose 2} = \sum_{k=0}^{2} {n \choose k} \Rightarrow \text{Pajor lemma is sharp}$$

$$\text{Zero function as b} + \text{pairs } (a < b)$$

(b)
$$k = \text{fall functions on an } n\text{-point domain supported by } \leq d \text{ pts}$$

$$V(k) = d \text{ (HW?)} \text{ and } |k| = \sum_{k=0}^{d} \binom{n}{k} \Rightarrow \text{sharp again!}$$

Remarks ()
$$\underset{k=1}{\overset{d}{\underset{k=1}{\text{lend}}}} (\underset{k}{\overset{n}{\underset{k=1}{\text{lend}}}}) = (\underset{k}{\overset{en}{\underset{k=1}{\text{lend}}}}) = (\underset{k}{\overset{k}{\underset{k=1}{\text{lend}}}}) = (\underset{k}{\overset{k}{\underset{k=1}{\text{lend}}}}$$

(2) Heuristically, $\log |\mathcal{H}| = \# \text{ bits to specify a function in } \mathcal{R}$ $d = vc(\mathcal{F}) \sim \# \text{ parameters that describe functions in } \mathcal{R}$ $=) \log |\mathcal{H}| \times d \text{ is expected.}$