REMARKS on Chernoff’s inequality:

1. Lower tails are similar: \[P \{ S_N \leq t \} \leq e^{-t} \left(\frac{e^t}{t} \right)^t \quad \forall 0 < t \leq \mu \] (Uniform problem)

2. Chernoff is optimal: if \(S_N \sim \text{Binom}(N, \mu) \) then \[P \{ S_N \geq t \} \geq (\mu/t)^t \quad \forall 1 \leq t \leq N \]

3. Large deviations: when \(t \) is large, the “Poisson tail” \(\sim t^{-t} = e^{-t \log t} \) is heavier than Gaussian \(e^{-t^2/2} \)

4. Small deviations: when \(t \approx \mu \), say \(t = (1+\delta)\mu \),
 \[e^{-\mu} \left(\frac{2\mu}{t} \right)^t = e^{-\mu} \left(\frac{e^{(1+\delta)\mu}}{1+\delta} \right)^{(1+\delta)\mu} \]
 \[= e^{\mu(\delta - (1+\delta) \log(1+\delta))} \leq e^{-\delta^2 \mu/6} \]

 Combine upper & lower tails

 \[\text{Coc (Chernoff’s ineq: small deviations)} \]

 \[P \{ |S_N - \mu| \geq \delta \mu \} \leq \exp(-\delta^2 \mu/6) \quad \forall \delta \in [0, 1] \]
APPLICATION: RANDOM GRAPHS

Def Erdös-Rényi model \(G(N,p) \):
Fix a set of \(N \) vertices.
Connect each pair of vertices with an edge independently with prob. \(p \).

\[
G(N,p) \text{ for } N=200, \ p=\frac{1}{40}
\]

\[
G(N,p) \text{ for } p=\frac{1}{100}
\]

- **Def** The degree of a vertex \(i \) is \(\deg(i) = \# \text{edges connected to } i \)

\[
\deg(i) = S_{N-1} \sim \text{Binom}(N-1, p) \Rightarrow \mathbb{E}\deg(i) = (N-1)p =: d
\]

"Expected degree"

- **Phase transitions**
 \[d = 1 : \text{giant component} \]
 \[d = \log n : \text{connectivity} \]
 \(\{ \) (see Wikipedia) \(\}

Def a graph is \(d \)-regular if \(\deg(i) = d \ \text{\forall} \ i \)

We will show: \(d \sim \log n \) is a phase transition for regularity of \(G(n,p) \):
\[
\begin{cases}
 d \gg \log n \Rightarrow \text{almost } d\text{-regular} \\
 d \ll \log n \Rightarrow \text{very far from it}
\end{cases}
\]
There exists a constant C_0 such that if $d \geq C_0$, then $G(n,p)$ is almost d-regular with high probability.

$$\Pr\left\{ \forall i : 0.9d \leq \deg(i) \leq 1.1d \right\} \geq 0.9.$$

Proof:

By Chernoff's inequality,

$$\Pr\left(\deg(i) - d \geq 0.1d \right) \leq \exp\left(-\frac{0.1^2 d}{6} \right) \leq \exp\left(-\frac{0.225 d}{6} \right) \leq \frac{1}{10N} \quad \text{if we choose } C \text{ a large constant.}$$

By union bound:

$$\Pr\left(\bigcup_{i=1}^{n} E_i^c \right) \leq \sum_{i=1}^{n} \Pr(E_i^c) \leq n \cdot \frac{1}{10N} = \frac{1}{10}.$$

$$\Rightarrow \Pr\left(\bigcap_{i=1}^{n} E_i \right) \geq 1 - \frac{1}{10} = \frac{9}{10} \quad \text{(de Morgan law)}.$$

QED