PROBABILITY: A GRADUATE GURSE

Q: How to incorporate randommers into sience / math?
Ans: measure theory.
Measure probability
Measure the sets
$$\rightarrow$$
 events
Measure hunctions \rightarrow random variables
Lelesgue integral \rightarrow expectation
Radon Nikodym derivative \rightarrow conditional expectation
So let's recall the bories of measure theory:
Def ($\underline{\sigma}$ -algebra) let $\underline{\sigma}$ be \forall set.
A collection of subsets $\overline{F} \in 2^{2}$ is called a $\underline{\sigma}$ -algebra if:
(i) $E \in \overline{F} \Rightarrow E^{C} \in \overline{F}$
(i) $E, E_{2,-} \in \overline{F} \Rightarrow \bigcup_{i=1}^{\infty} E_{i} \in \overline{F}$
i.e. \overline{F} is doted under complement and countable union
The sets $E \in \overline{F}$ are called measurable ; the poir $(\underline{\Phi}, \overline{F})$ is called a measurable poce
Remarks (D A $\overline{\sigma}$ -algebra is automatically doted under countable interaction:
(D_{1Y} : de Magan's low)
(2) We automatically have $\underline{D} \in \overline{F}$, $\underline{\phi} \in \overline{F}$
(i) $\mu(\underline{\phi}) = 0$
(ii) $\mu(\underline{\sigma}) = 0$
(iii) $\Psi \in \overline{F}, \ \mu(E) > 0$
(iv) is called a measure space:

 P

Remark The series in (iii) has nonnegative terms =) either converges or diverges 10 +00 H's ok either way. Q: LHS does not depend on the ordering of E: Why does RHS not depend on the ordering? Teleporting to Probability:

Think of an experiment.
$$D = \{possible outcomes\} \}$$

 $E = \{some outcomes\} = event$
 $P(E) = probabilitz of E$

Set operations:

$$E \cap F = "E \text{ and } B \text{ occur}"$$

$$E \cup F = "E \text{ of } B \text{ occur}" \text{ (or Both)}$$

$$E^{c} = "E \text{ does not occur"}$$

$$E \setminus F = E \cap F^{c} = "E \text{ But not } F \text{ occurs"}$$

$$E \subset F \Leftrightarrow "E \text{ implies } F"$$

$$E \cap F = \phi \iff "E \text{ and } F \text{ are mutually exclusive"}$$

EXAMPLES

$$(Waiting time) \quad Flip a coin until the first T
$$\mathcal{D} = \{T, KT, HKT, HKHT, HHHT, HHHHT, ...\} \quad \leftarrow infinite
\exists = 2^{\mathcal{D}} \quad \leftarrow uncountable
P(\{T\}) = \frac{1}{2}, P(\{KT\}) = \frac{1}{4}, P(\{HKT\}) = \frac{1}{8}, ... \quad (note: \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ... = 1)$$
Extend P to \exists by countable additivity

$$(Ex: check \text{ that this is well defined})$$

$$P(\{HKHT\}) + P(\{HKHHT\}) + P(\{HKHHT\}) + P(\{HKHHT\}) + ...)$$

$$= P(\{HKHT\}) + P(\{HKHHT\}) + P(\{HKHHT\}) + ...)$$

$$= \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + ... = \frac{1}{2^3} = \frac{1}{8}.$$$$

4 (random permutations)

$$\Sigma = S_n = symmetric group. Elements = permutations of \{1, ..., n\}.$$

$$|\mathcal{I}| = n! \qquad \exists := 2^{\mathcal{R}}$$

$$P := uniform : \left\{ \begin{array}{l} make \quad P(\pi) = \frac{1}{n!} \quad \forall \pi \in S_n \\ \$ \text{ extend by additivity} \end{array} \right\} \Rightarrow P(E) = \frac{|E|}{n!} \quad \forall E \in S_n$$

$$Q : n \text{ people form a line at random.}$$

$$What is the probability that Alice is in front of Bob?$$

$$Ans: \frac{1}{2} \text{ by symmetry} \qquad (n!/2 \text{ permutations with } \pi(\alpha) = \pi(6))$$

-4 --

(5) (Statistical mechanics) Consider a physical system X

$$\Omega := set of possible states X can be in
E(w) := energy of X in state well ("Hamiltonian")
Probability that X is in state well ("Hamiltonian")
Probability that X is in state well
 $P(w) := \frac{1}{Z} exp(-\frac{E(w)}{kT})$
Here $k = Boltomenn constant (allochte)
T = thermodynamic temperature
 $Z = \sum exp(-\frac{E(w)}{kT}) = normalions const ("partition function")$
 $w D = 0$ and form probability on D
i.e. system is equally likely to R in the state
: bow temperatures: if $T \to \infty$, $P(hul) \to \frac{1}{Z}$ thus Z
 $\Rightarrow P \to uniform probability on D$
i.e. system is equally likely to R in the state
: bow temperatures: if $T \to 0$, $P(hul) \to \begin{cases} 1 & \text{if } Goods \\ 0 & \text{if } W = 0 \end{cases}$
 $where $w_0 = \text{state}$ with lowest energy, i.e. $E(w_0) = \min E(w)$
 \Rightarrow system freezes in the lowest-energy state.
(6) Breack a stick at a rendom point: $\int \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$.
 $F = Borel v-algebra = smallest v-algebra that contains all open sets.
 $G = \frac{1}{N + 1} = \frac{1}{2} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$.
 $F = P(n) = \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$.$$$$$