PROBABILITY: A GRADUATE CURE
Q: How to incorporate randomness into science/math?
Ans: measure theory.
Measwe \longrightarrow probability
Measurable sets \rightarrow events
Measurable functions \longrightarrow random variables
Lebesgue integral \rightarrow expectation
Radon-Nikodym derivative \rightarrow conditional expectation
So let's recall the basics of measure theory:
Def (σ-algebra) let Ω be \forall set.
A collection of subsets $F \subset 2^{\Omega}$ is called a σ-algebra if:
(i) $E \in \mathcal{F} E^{c} \in \mathcal{F}$
(ii) $E_{1}, E_{2}, \ldots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} E_{i} \in \mathcal{F}$
i.e. F is closed under complement and countable union

The sets $E \in F$ are called measurable; the pair (Ω, F) is called a measurable space
Remarks (1) A σ-algebra is automatically dosed sender countable intersection: (DIY: de Morgan's law)
(2) We automatically have $\Omega \in \mathcal{F}, \phi \in \mathcal{F}$

$$
\left(\Omega=E \cup E^{c}, \quad \phi=\Omega^{c}\right)
$$

Def (measure) Let (Ω, \mp) be a measurable space.
A function $\mu: F \rightarrow \mathbb{R} \cup\{\infty\}$ is called a measure if
(i) $\mu(\phi)=0$
ie. "countably additive"
(ii) $\forall E \in F, \mu(E) \geqslant 0$
(iii) $\forall E_{1}, E_{2}, \ldots \in F$ disjoint, $\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right) \stackrel{\downarrow}{=} \sum_{i=1}^{\infty} \mu\left(E_{i}\right)$

The triple (Ω, F, μ) is called a measure space.
Remark The series in (iii) has nonnegative terms \Rightarrow either converges or diverges to $+\infty$. It's ok either way.
Q: LHS does not depend on the ordering of E_{i} why does RKS not depend on the ordering?

Teleporting to Probability:
Def let (Ω, F, μ) be a measure space.
If $\mu(\Omega)=1$, then μ is called a probability measure or just "probability" and is denoted by \mathbb{P}.
In this case, (Ω, F, μ) is called a probability_space Ω is called a sample space
Points $\omega \in \Omega$ are called outcomes (of an "experiment")
Sets $A \in \mathcal{F}$ are called events
Think of an experiment. $\Omega=\{$ possible outcomes $\}$
$E=\{$ some outcomes $\}=$ event $\mathbb{P}(E)=$ probability of E

Set operations:
$E \cap F=$ " E and B occur"
$E \cup F=$ "E or B occur" (or both)
$E^{c}=$ "E does not occur"
$E\left(F=E_{n} F^{c}=\right.$ " E but not F occurs"
$E \subset F \Leftrightarrow " E$ implies F "
$E \cap F=\varnothing \Leftrightarrow$ " E and F are mutually exclusive"
EXAMPLES
(1) Flip a fair coin

$$
\begin{aligned}
& \Omega=\{h, T\} \quad F=2^{\Omega}=\{\phi, H, T,\{H, T\}\} \\
& \mathbb{P}(\{H\})=P(\{T\})=1 / 2, P(\phi)=0, \mathbb{P}(\Omega)=1 .
\end{aligned}
$$

(2) Flip a fair win twice

$$
\begin{aligned}
& \Omega=\{k, T, k T, T u, T T\} \\
& F=2^{2}=\{\not \subset,\{H k\},\{k T\},\{T k\},\{T T\},\{H H, k T\},\{H H, T H\}, \ldots\} \\
& \mathbb{P}(\{k u\})=P(\{k T\})=P(\{T u\})=P(\{T T\})=\frac{1}{4},
\end{aligned}
$$

and extend to other events by additivity, e.g.

$$
P(\text { at least one tail })=P(\{K T, T K, T T\})=P(\{k T\})+P(\{T n\})+P(\{T T))=\frac{3}{4} .
$$

$$
-3-\mathbb{P}=\text { "Uniform probability" on } 4 .
$$

(3) (Waiting time) Flip a coin until the first T
$\Omega=\{T, H T, H K T, H K H T, H H H K T, \ldots\} \leftarrow$ infinite
$于=2^{\Omega} \leftarrow$ uncountable
$P(\{T\})=\frac{1}{2}, P(\{u T\})=\frac{1}{4}, \quad P(\{H k T\})=\frac{1}{8}, \ldots \quad$ (note: $\left.\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots=1\right)$
Extend P to $于$ by countable additivity
(Ex: Check that this is well defined)

- $P($ it takes more than 3 flips to get a tail $)=P(\{$ кик $T\},\{$ \{ииит $\}$, \{пиниит $\}, \ldots)$

$$
\begin{aligned}
& =P(\{\text { пин }\}\})+P(\{\text { иппи } T\})+P(\{\text { пнип } T\})+\cdots \\
& =\frac{1}{2^{4}}+\frac{1}{2^{5}}+\frac{1}{2^{6}}+\cdots=\frac{1}{2^{3}}=\frac{1}{8} .
\end{aligned}
$$

- Remark : P is not a uniform measure on Ω.

In fact there is no uniform measure on Ω (or on \forall infinite sample space Ω) in particular, one con't talk about "a random number uniformly chosen from \mathbb{R} "
(4) (random permutations)
$\Omega=S_{n}=$ symmetric group. \quad Elements $=$ permutations of $\{1, \ldots, n\}$.

$$
|\Omega|=n!\quad F:=2^{\Omega}
$$

$P:=$ uniform: $\left\{\begin{array}{l}\text { make } \mathbb{P}(\pi)=\frac{1}{n!} \quad \forall \pi \in S_{n} \\ \text { \& extend by additivity }\end{array}\right\} \Rightarrow \mathbb{P}(E)=\frac{|E|}{n!} \quad \forall E<S_{n}$

- Q: n people form a line at random.

What is the probability that Alice is in front of Bob?
Ans: $\frac{1}{2}$ by symmetry $(n!/ 2$ permutations with $\pi(a)>\pi(b))$
(5) (Statistical mechanics) Consider a physical system X
$\Omega:=$ set of possible states X can be in
$E(\omega):=$ energy of X in state $\omega \in \Omega \quad$ ("Hamiltonian")
Probability that X is in state w :

$$
P(\omega):=\frac{1}{Z} \exp \left(-\frac{E(\omega)}{k T}\right)
$$

Here $k=$ Boltzmann constant (absolute)
$T=$ thermodynamic temperature

$$
Z=\sum_{\omega \in \Omega} \exp (-E(\omega) / k T)=\text { normalizing const ("partition function") }
$$

c assume Ω is finite

- High temperatures: if $T \rightarrow \infty, \quad P(\{\omega\}) \rightarrow \frac{1}{Z} \quad \forall \omega \in Z$
$\Rightarrow P \rightarrow$ uniform probability on Ω
i.e system is equally likely to be in \forall state
- Low temperatures : if $T \rightarrow 0, \quad P(f \omega\}) \rightarrow \begin{cases}1 & \text { if } \omega=\omega_{0} \\ 0 & \text { of } \omega \neq \omega_{0}\end{cases}$ where $\omega_{0}=$ state with lowest energy, ie. $E\left(\omega_{0}\right)=\min _{\omega \in \Omega} E(\omega)$ \Rightarrow system freezes in the lowest-energy state.
(6) Break a stick at a random point:

$\Omega=[0,1], \quad P=$ uniform, i.e. lebesgue measure.
$F=$ Bored σ-algebra = smallest σ-algebra that contains all open sets.
Q : Why not 2^{Ω} ? \nexists extension of the concept of lebesgue meas. from intervals (length) to all subsets of $[0,1]$!
Note: $\mathbb{P}(\{\omega\})=0 \quad \forall \omega \in[0,1]$
This is why \mathbb{P} assigns probabilities to events $E \in \mathcal{F}$ rather than outcomes $\omega \in \Omega$.
Example, $\mathbb{P}\{$ neither piece is more than $2 \times$ Conger than the other $\}$

$$
=P\left(\underset{0}{ } \quad \frac{1}{3} \quad \frac{2}{3}, 1\right)=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}
$$

