(3) Turan's Theorem '1941 [AS]
"If in a group of 100 people each person knows 3 other people, then there are 25 people who don't know each other".

More generally:
every vertex has exactly d neighbors
TAM \forall d-regular graph on n vertices $G(V, E)$
\exists an independent set of cardinality $\geqslant \frac{n}{d+1}$

a subset of vertices no two of which are neighbors
Proof Choose a random ordering of V (unitorney)

- $I:=\{v \in V: v$ is the least element among v and its neighbors $\}$

$$
\mathbb{E}|I|=\mathbb{E} \sum_{v \in V} \mathbb{1}_{\{v \in I\}}=\sum_{v \in V} \underbrace{P\{v \in I\}}_{\| \prime}=\frac{n}{d+1}
$$

- I is an independent set: $\quad \frac{1}{d+1}$ (prob, that v is the least among $d+1$ element of $u, v \in I$ and $(u, v) \in E$ then $u<v$ and $v<u \Rightarrow\{$

Remark: Turan's bound is optimal for the union of $\frac{n}{d+1}$ cliques of size $d+1$.
(4) k-SAT problem

- A Boolean formula on n literals is a function $\phi:\{T, F\}^{n} \rightarrow\{T, F\}$
- ϕ is satisfiable if \exists an assignment x such that $\Phi(x)=T$
- Boolean formula can be expressed in the conjunctive normal form (CNF): AND of ORS (of x_{i} 's and \bar{x}_{i} 's), eng.

$$
\phi(x)=\left(x_{1} \vee \vee \bar{x}_{2}\right) \stackrel{\text { AND }}{\wedge}\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \bar{x}_{1} \text {. Even } 3-\text { sat } \in N P
$$

Q Consider a random " k-SAT" formula with r rn clauses each of length k, where each literal is chosen independently uniformly from $\left\{x_{n} \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}\right)$. What is the probability, that ϕ is satisfiable?
each "?" cam be a literal x_{i} or its negation $\frac{k}{x_{i}}$
TiM If $r>2^{k} \ln 2$ and $n \rightarrow \infty$ (while rok are fixed), then $\mathbb{P}\{\phi$ is satisfiable $\} \rightarrow 0$
Proof $\mathbb{P}\{\phi$ is satisfiable $\}=\mathbb{P}\left\{\exists x \in\{T, F\}^{n}: \phi(x)=T\right\}$

$$
\begin{aligned}
& \leq \sum_{x \in\{T, F\}^{n}} P\{\phi(x)=T\} \Theta \quad \text { (union bound) } \\
& \phi(x)=\phi_{1}(x) \wedge \ldots \wedge \phi_{r n}(x) \Rightarrow \\
& \mathbb{P}\{\phi(x)=T\}=\mathbb{P}\left\{\phi_{i}(x)=1 \quad \forall i=1, \ldots, \text { ru }\right\} \stackrel{i n d e r}{=} \prod_{i=1}^{r_{n}} \underbrace{P\left\{\phi_{i}(x)=1\right\}}_{11}=\left(1-\frac{1}{2^{k}}\right)^{r n} \\
& \Theta 2 \\
& \left.2^{n}\left(1-\frac{1}{2^{k}}\right)^{r n} \stackrel{b^{1-x} \leq e^{-x}}{e^{-r / 2^{k}}}\right)^{n} \rightarrow 0 \cos n \rightarrow \infty \text {. I } \quad \begin{array}{l}
\left.1-\left(\frac{1}{2}\right)^{k} \quad \text { (since } \phi_{k}=k \text { os) }\right)
\end{array} \\
& \hat{1} \text { if } r>2^{k} \ln 2
\end{aligned}
$$

Remark if $k \geqslant 3, r<2^{k} \ln 2-k, \mathbb{P}\{\phi$ is satisfiable $\} \rightarrow 1(n \rightarrow \infty)$ [Alon-Naor-Peres or]
(5) Monte-Carlo Integration

Problem For a given function $f:[0,1]^{n} \rightarrow \mathbb{R}$, numerically compute

$$
\int_{0}^{1} \ldots \int_{0}^{1} f\left(x_{1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{d}=\int_{[0,1]^{d}} f(x) d x
$$

METHOD 1

- If $d=1$: use the grid

$$
\begin{gathered}
\int_{0}^{1} f(x) d x \approx \sum_{i=1}^{n} \underbrace{\left(x_{i+1}-x_{i}\right)}_{!!} f\left(x_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \\
\text { "Resolution" } 1 / n
\end{gathered}
$$

"Resolution" " $\because=1 / n$

- If $d=2$, do similarly but use the grid

- For general dimension d, we need $n=(1 / \varepsilon)^{d}$ pts.

Exponential in d. Too large.
"the curse of dimensionality"

Method 2): Monte-Carlo

- Instead of choosing x_{i} on the grid, choose them at random independently: $\left.X_{i} \sim \operatorname{Un} f(10,1]^{d}\right)$ $\Rightarrow f\left(x_{i}\right)$ are i.i.d. rev's.

$$
\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \stackrel{?}{\approx} \int_{[0,1]^{d}} f(x) d x
$$

- $E\left[\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right]=\frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathbb{E} f\left(x_{i}\right)}_{\|}=\mathbb{E} f(x)$

Eff $f(x)$ by identical distribution
$=\int_{\mathbb{R}^{d}} f(x) p(x) d x$, where density is $p(x)=\left\{\begin{array}{l}1, x \in[0,1]^{d} \\ 0,\end{array}\right.$

$$
=\int_{[0,1]^{d}} f(x) d x
$$

\Rightarrow we have an unbiased estimator of the integral
-Rate of convergence? L2 error ("MSE"):

$$
\begin{aligned}
& \text { Rate of convergence? } \underbrace{\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)}_{\mathbb{Z}_{z}^{\|}}-\underbrace{\int_{E} f(x) d x}_{[0,1)^{d}})^{2}=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \underbrace{\operatorname{Var}\left(f\left(x_{i}\right)\right)}_{\operatorname{Var}(f(x))}=\frac{\operatorname{Var}(f(x))}{n} \\
& \leq \frac{1}{n} \quad \text { egg. identical distribution } \\
& \leq|f(x)| \leq 1 \quad \forall x .
\end{aligned}
$$

- Chebysher's inequality \Rightarrow with probability $\geqslant 0.99$,

$$
\left|\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)-\int_{[0,1]^{d}} f(x) d x\right| \leq \frac{10}{\sqrt{n}}
$$

Regardless of dimension d!

