(6) CONNECTIVITY OF RANDOM GRAPKS

Erdïs-Rényi model $G \sim G(n, p)$: fix n vertices, connect each pair independently with prob. p
TuM $\left[E R^{\prime} 1960\right.$] Fix $\varepsilon>0$, let $P_{n} \in(0,1)$ be a sequence. $G_{n} \sim G\left(n, P_{n}\right)$, $n \rightarrow \infty$
(i) If $P_{n}>(1+\varepsilon) \frac{l_{n}}{n}, G_{n}$ is connected with probability 1-o(1)
(ii) If $P_{n}<(1-\varepsilon) \frac{\ln n}{n}, G_{n}$ is disconnected with probability $1-0(1)$

Remark: Expected degree of \forall vertex $=(n-1) p$.
"Having $\ln n$ friends makes the world connected" (V.S. Population is $n=440,00,000 . \ln n=20$)

Proof (i) G is disconnected $\Leftrightarrow \exists$ some $k \leq \frac{n}{2}$ vertices that are disconnected from the other $n-k$

- The prob. that this happens for a given set of k vertices is $(1-p)^{k(n-k)}$, and there are $\binom{n}{k}$ ways to choose this set no edges $\stackrel{\text { U.B. }}{\Rightarrow} R\{G$ is disconnected $\} \leq \sum_{k=1}^{n / 2}\binom{n}{k}(1-p)^{k(n-k)}=: a_{n, k} \leq$?
Use $\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k} \quad \forall 1 \leq k \leq n \quad$ (HF) \Rightarrow

$$
\left.a_{n, k} \leq\left[\frac{e n}{k}(1-p)^{n-k}\right]^{k} \underset{\uparrow}{\leqslant}\left[\frac{e n}{k} e^{-p(n-k)}\right]^{k} \underset{\uparrow}{<}<\frac{e n}{k} n^{-(1+\varepsilon)(1-k / n)}\right]^{k} .
$$

(1) If $\frac{k}{n}<\frac{\varepsilon}{3}$ then $(1+\varepsilon)(1-k / n) \geq(1+\varepsilon)(1-\varepsilon / 3) \geq 1+\varepsilon / 3 \Rightarrow$

$$
a_{n, k}<\left(e n \cdot n^{-(1+\varepsilon / 3)}\right)^{k} \leq\left(e n^{-\varepsilon / 3}\right]^{k}
$$

(2) If $\frac{\varepsilon}{3} \leq \frac{k}{n} \leq \frac{1}{2}$ then $a_{k, n} \leq\left[e \cdot \frac{3}{\varepsilon} n^{-(1+\varepsilon)(1-1 / 2)}\right]^{k} \leq\left(\frac{3 e}{\varepsilon} n^{-1 / 2}\right)^{k}$

$$
\begin{array}{r}
\Rightarrow \mathbb{P}\{G \text { is disconnected }\} \leq \sum_{k=1}^{\infty}\left(e n^{-\varepsilon / 3}\right)^{k}+\sum_{k=1}^{\infty}\left(\frac{3 e}{\varepsilon} n^{-1 / 2}\right)^{k} \xrightarrow{\rightarrow 0} \text { as } n-\infty \\
\text { (while } \varepsilon>0 \text { is Reed). }
\end{array}
$$

(ii) We will show that G has an isolated vertex with prob 1-o(1). "Second moment method"
$X:=\#$ (isolated vertices) UTs: $P\{X>0\}=1-0(1)$
$\sum_{i=1}^{n_{n}} \mathbb{1}\{i$ is is lated $\}$
$\mu:=\mathbb{E} X=\sum_{i=1}^{n} \mathbb{P}\{$ vertex i is isolated $\}=n(1-p)^{n-1}$
(*) $\quad=n(1-p)(1-p)^{n} \approx \frac{n}{1-p} \cdot e^{-p n}$
$\wedge_{\text {make this rigorous using } 1-p \geq e^{-p-p^{2}} \quad \forall p \in\left(0, y_{2}\right)}^{\substack{\text { here }}}$
$(* *) \geqslant \frac{n}{1-p} \cdot e^{-(1-\varepsilon) \ln n}=\frac{n^{\varepsilon}}{1-p} \rightarrow \infty \quad(n+\infty)$

- Is this enough to conclude that $X>0$ w.l.p? No.
- But if $\sigma=\sqrt{\operatorname{Var}(x)}<\mu$, then enough:

$$
P\{X=0\} \leq \mathbb{R}\left\{|x-\mu|>\frac{\mu}{2}\right\} \stackrel{\downarrow}{\substack{\text { chebysher }}} \frac{4 \sigma^{2}}{\mu^{2}}=4 \cdot \frac{E x^{2}-\mu^{2}}{\mu^{2}}=4\left(\frac{E\left[x^{2}\right]}{(\mathbb{E} x)^{2}}-1\right)=0(1)
$$

if we can show that

$$
\begin{aligned}
& \frac{\mathbb{E} X^{2}}{(\mathbb{E} X)^{2}}=1+o(1) \\
& \text { - } X^{2}=\left(\sum_{i=1}^{n} \mathbb{1}_{\{i \text { is isolated }\}}\right)^{2}=\sum_{i, j=1}^{n} \mathbb{1}_{\{i, j \text { are isolated }\}}=\sum_{i=1}^{n} \mathbb{1}_{\{i \text { isolated }\}}+\sum_{i \neq j} \mathbb{1}_{\{i, j \text { isolated }\}} \\
& \mathbb{E} X^{2}=\mu+\underbrace{\sum_{i \neq j}}_{n(n-1) \text { terms }} \underbrace{\mathbb{P} i, j \text { isolated }\}}_{(1-p)^{2(n-2)+1}} \\
& { }_{n-2}^{\frac{x}{7}} i_{\text {noedges }}^{1} \frac{1}{j}^{n-2} \\
& =\mu+n(n-1)(1-p)^{2 n-3} \\
& \text { - } \frac{\mathbb{E} X^{2}}{\mu^{2}} \stackrel{(*)}{=} \underbrace{\frac{1}{\mu}}_{(* *)}+\frac{n(n-1)(1-p)^{2 n-3}}{\frac{\left(n(1-p)(1-p)^{n}\right)^{2}}{\downarrow}}) \rightarrow 1 \text {, as required. }
\end{aligned}
$$

Remark $\operatorname{diam}\left(G_{n, p}\right) \sim \frac{\log n}{\log n p} \quad$ if $1<n p<c \log n$
$-52-$

