(a) CONNECTIVITY OF RANDOM GRAPHS
• Endois - Réngi model
$$G \sim G(n,p)$$
: fix in vertices, connect each pair independently
with Prob. p
THM [ER 'Me0] Fix exo, let $p_{e}e(o_{1})$ be a sequence. $G_{n} \sim G(n,P_{e})$, nerve
(i) If $p_{n} > (t+e) \lim_{n} , G_{n}$ is connected with probability $1-o(1)$
(ii) If $p_{n} < (t-e) \lim_{n} , G_{n}$ is disconnected with probability $1-o(1)$
(ii) If $p_{n} < (t-e) \lim_{n} , G_{n}$ is disconnected with probability $1-o(1)$
Proof (i) G is disconnected degree of V vertex = $(n-1)p$.
"Having bun friends makes the world connected"
(US Reputation is $n = 14000000$ fun = 20)
Proof (i) G is disconnected $c \Rightarrow \exists$ some $k \le \frac{n}{2}$ vertices that are disconnected
from the object $n \rightarrow k$
• The prob. that this happens for a given set of k vertices is no edges
is $(1-p)^{k(n-k)}$, and there are $\binom{n}{k}$ using to door this is the oddes
 $p_{1}(4 \text{ is disconnected}) \leq \sum_{k=1}^{1/2} \binom{n}{k} \binom{1}{(k-1)} (1-p^{k(n+k)}) = a_{n,k} = ?$
Use $\binom{n}{k} \le \binom{n}{k} \le \binom{n}{k} \forall 1 \le k \le n$ (film) \Rightarrow
 $a_{n,k} \le \left[\frac{en}{k} (1-p)^{n+k}\right]^{k} \le \left[\frac{en}{k} e^{-p(n-k)}\right]^{k} \le \left[\frac{en}{k} n^{-(n+1)(1-4/k)}\right]^{k}$
 $\sum p \ge (n - n^{-(1+4/k)})^{k} = (e^{-4/3})^{k}$.
(2) If $\frac{e}{3} \le \frac{k}{n} \le \frac{1}{2}$ then $a_{k,n} \le \left[e^{-4/3}\right]^{k}$
 \Rightarrow P[G is disconnected] $\le \sum_{k=1}^{\infty} (e^{-4/3})^{k} + \sum_{k=1}^{n} \left(\frac{3e}{2} n^{-4/2}\right)^{k} \rightarrow 0$ as $n = \infty$
 $(n,k) \le \left[2n \cdot n^{-(1+4/3)}\right]^{k} \le \left[e^{-4/3}\right]^{k}$.

(i) We will show that G has an isolated vertex with prob
$$(1-e(1))$$
.
"Second norment method"
X:= # (isolated vertices) WTS: $P\{X>o\} = 1-o(1)$
 $\frac{1}{2n}$ $\frac{1}{2}$ (isoirdated)
 $\mu:= EX = \sum_{i=1}^{\infty} P\{vertex i is isolated\} = n(1-p)^{n+1}$ isolated
 $\mu:= EX = \sum_{i=1}^{\infty} P\{vertex i is isolated\} = n(1-p)^{n+1}$ isolated
 $\mu:= EX = \sum_{i=1}^{\infty} P\{vertex i is isolated\} = n(1-p)^{n+1}$ isolated
 $\mu:= EX = \sum_{i=1}^{\infty} P\{vertex i is isolated\} = n(1-p)^{n+1}$ isolated
 $\mu:= EX = \sum_{i=1}^{\infty} P\{vertex i is isolated\} = n(1-p)^{n+1}$ isolated
 $\mu:= EX = \sum_{i=1}^{\infty} P\{vertex i is isolated\} = n(1-p)^{n+1}$ isolated
 $\mu:= EX = \sum_{i=1}^{\infty} P\{vertex i is isolated} = n(1-p)^{n+1}$ isolated
 $\mu:= D(1-p)^{n} = \frac{n}{1-p} = e^{-pn}$ isolated
 $h= 0$ ($n = \infty$)
 $h= 0$ ($n = 0$)