(7) Sperner's Theorem

Def A family F of subsets of $\{1, \ldots, n\}$ is called an antichain if no member of F is contained in another.

Ex: $F=\{$ all subsets of cardinality $k\}$
tiM [Sperner) \forall antichain satisfies $|F| \leq\binom{ n}{\lfloor n / 2\rfloor}$
Remark: equality achieved for $k=\lfloor n / 2\rfloor$
Proof Consider a random chain

$$
C_{\sigma}:=\{\sigma(\{1, \ldots, i\}): i \in\{0, \ldots, n\}\} \quad \text { where } \sigma \sim \text { Unif }\left(S_{n}\right)
$$

is a random permutation
\forall antichain F can contain at most 1 set from any given chain \Rightarrow

$$
\left|F_{n} C_{\sigma}\right| \leq 1 .
$$

On the other hand,

$$
\begin{gathered}
X:=\left|F \cap C_{\sigma}\right|=\sum_{F \in F} 1_{\left\{F \in C_{\sigma}\right\}} \\
\Rightarrow 1 \geqslant \mathbb{E} X=\sum_{F \in F} \mathbb{P}\left\{F \in C_{\sigma}\right\}=\sum_{F \in F} \frac{1}{\left(\begin{array}{l}
n \\
|F|)
\end{array} \geqslant|J|\binom{n}{[n / 2\}} .\right.}
\end{gathered}
$$

C_{σ} contains exactly 1 set of size $|F|, \quad\binom{n}{(n / 2)}$: the middle binomial and this set is uniformly distributed coefficient is the largest. among all $|F|$-element subsets of $\{1, \ldots, n\}$
(8) Littlewood-Offord Inequality

- If \pm signs are chosen at random, independently,

$$
P\{\underbrace{ \pm 1 \pm 1 \cdots \pm 1}_{n \text { (even) }}=0\}=P\left\{\# \text { pluses }=\frac{n}{2}\right\}=2^{-n}\binom{n}{n / 2} \sim \frac{1}{\sqrt{n}} \text {. }
$$

- If 1 's are replaced with \forall nonzero weights, even better:

THM [Littlewood-Offord; Erdos]
let a_{1}, \ldots, a_{n} be nonzero numbers,
$\varepsilon_{1}, \ldots, \varepsilon_{n}$ be independent Rademacher random var's.
Then

$$
\mathbb{P}\left\{\sum_{1}^{n} \varepsilon_{i} a_{i}=0\right\} \leqslant 2^{-n}\binom{n}{\ln / 2\rfloor} \sim \frac{1}{\sqrt{n}}
$$

Equivalently, there are $\leq\binom{ n}{(n h)}$ choices of signs $\left(\varepsilon_{i}\right)$ such that $\sum_{i}^{n} \varepsilon_{i} a_{i}=0$ (*)
Proof WIOG $a_{i}>0$.

- Consider all choices of signs $\left(\varepsilon_{i}\right)$ such that $\sum_{i}^{n} \varepsilon_{i} a_{i}=0$.

Each such choice is uniquely determined by the set

$$
F:=\left\{i: \varepsilon_{i}=+1\right\} \quad \subset\{1, \ldots, n\}
$$

- These sets form an antichain

(Indeed, if $F \subset F^{\prime}$, then one can/change some "-"signs to " + "signs and still have the identity \quad| F:+++ $++++\cdots$ |
| :--- |
| $+\ldots$ | But this is impossible: since all $a_{i}>0$, the sum must get bigger.

- Hence, by Sperner's theorem, \exists at most $\binom{n}{\lfloor u / 2\rfloor}$ such sets F. Each F corresponds one-to-one to a choice of $\left(\varepsilon_{i}\right)$ satisfying $\sum_{1}^{n} \varepsilon_{i} a_{i}=0$ $\Rightarrow(*) h_{0}(d s$.

Covariance
Def For random variables x, y,

$$
\operatorname{Cov}(x, y)=\mathbb{E}[(x-\mathbb{E} x)(y-\mathbb{E} y)]=\mathbb{E}[x y]-\mathbb{E}(x) \mathbb{E}(y]
$$

\uparrow

$$
\left(\begin{array}{rl}
\text { prof: }: ~ L H S & =\mathbb{E}\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]=E\left(x y-\mu_{x} y-\mu_{y} x+\mu_{x} \mu_{y}\right) \\
& =\mathbb{E}[x y)-\mu_{x} \mu_{y}-\mu_{y} / \mu_{x}+\mu_{x} \mu_{y}
\end{array}\right)
$$

Remarks: 1. $\operatorname{Cov}(x, x)=\operatorname{Var}(x)$
2. $\operatorname{Cov}(x, y)>0$: positively correlated (finger x tends to imply bigger y) $\angle 0$: negatively correlated (- ——— smaller)

3. X, Y are independent \Rightarrow uncorrelated $(E[X Y]=E[X] \cdot E[Y])$
4. But not vice versa:
(X, Y) \sim Unif (unit disc)

$$
\mathbb{E} X=\mathbb{E} Y=\mathbb{E}[X Y]=0
$$

but X, Y are dependent : $X>\frac{1}{\sqrt{2}}$ and $Y>\frac{1}{\sqrt{2}}$ are disjoint events
5. $\operatorname{Cov}(x, y) \leq \sqrt{\operatorname{Var}(x) \cdot \operatorname{Var}(y)} \quad$ (apply Canchy-Schwarz for $X-\mathbb{E} X, Y-\mathbb{E} Y$)
6. Def Pearson correlation coefficient

$$
\rho_{x, y}=\frac{\operatorname{Cov}(x, y)}{\sqrt{\operatorname{var}(x)} \sqrt{\operatorname{Var}(y)}} \quad \text { Unit-free }
$$

$P_{x, y} \in[-1,1] ; \quad P_{x, y}= \pm 1 \Leftrightarrow x=y$ ass (By equality condition in Candly-Schwarz)
7. \forall r. variables $x_{1}, \ldots, x_{n}: \operatorname{Cov}\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i, j=1}^{n} \operatorname{Cov}\left(x_{i}, x_{j}\right)$
("distributive
law")

$$
\text { (proof: WLOG } \left.E X_{i}=0 \Rightarrow L K S=\mathbb{E}\left[\left(\sum_{i, j=1}^{n} x_{i}\right)^{2}\right]=\sum_{i, j=1}^{n} \mathbb{E}\left[x_{i} x_{j}\right]=\text { RUS }\right) \text {. }
$$

WARNING: Correlation even dependence!
Examples: (a) Midge ages belief: "lice (x) are beneticial for your health (y)" since they are rarely seen on sick people "People get sick because lice left them" ($x \Rightarrow y$)
Reality: vice versa. lice are sensitive to body temperature; fever causes them to leave.
(b) NYC study (1980's):
\exists a strong correlation between $\#$ crimes committed (X) and the amount of ice-cream sold by street vendors (Y).
Reality: both crime \& ice-cream consumption spike in the summer. x \& Z_{y} (time of year) Graphical model. Hidden Marker models. $x \longrightarrow y$

- BMI Paradox: If you have an average height and average weight, you are overweight.

Let W, H be the weight \& height of a randomly chosen person.

- $I:=\frac{W}{H^{3}}$ is the "body proportionality index" (same for \forall homothetir copies)

- Assume that $I \Perp H$ (taller people are not consistently skinnier/fatter than shorter people).
- If your height $=\mathbb{E H}$, your weight $=\mathbb{E W}$, then your index is

$$
I=\frac{\mathbb{E} W}{(\mathbb{E} H)^{3}}=\frac{\mathbb{E}\left[I K^{3}\right]}{(\mathbb{E} H)^{3}}=\frac{\mathbb{E}[I] \mathbb{E}\left[H^{3}\right]}{(\mathbb{E})^{3} V_{1}(\text { Jensen })}>\mathbb{E}[I] . \quad \Rightarrow \text { Overweight. }
$$

- But the real data indicate that $I<\mathbb{E}(I)$.

So it must be that $I \not X H$, specifically I, L must be negatively correlated (taller \Rightarrow skinnier)

- Remark: BMI is defined as $\frac{W}{W^{2}}$; same paradox occurs.

R why? $K^{2}=$ surface area. fat?

