General Multivariate Normal Distribution $N(\mu, \Sigma)$ - Recall standard normal $Z \sim N(o, I_n)$: pdf $f_Z(z) = \frac{1}{(2\pi)^{N_2}} e^{-1|z|^{N_2}/2}$, $Z \in \mathbb{R}^n$ (*) Def (General normal) $X = (X_{n}, ..., X_{n}) \in \mathbb{R}^{n}$ is a normal rector if X is an affine transformation of a standard normal r. vector Z~N(0, In), i.e. X=AZ+M for some invertible AGR", MEIR". • EX = µ, • $\operatorname{Cov}(X) = \mathbb{E}(AZ)(AZ)^{\mathsf{T}} = \mathbb{E}[AZZ^{\mathsf{T}}A^{\mathsf{T}}] = A \cdot \mathbb{E}[ZZ^{\mathsf{T}}] \cdot A^{\mathsf{T}} = AA^{\mathsf{T}} = Z$ TI Id · pdf? Assume u=0 for simplicity 7 determinant $= \int_{\mathcal{B}} f_{2}(Ax) |A|^{-1} dx$ $\Rightarrow f_{\chi}(x) = f_{z}(A'x) |A|^{-1} \stackrel{(*)}{=} \frac{1}{(2\pi)^{n/2} |A|} \exp(-\|A'x\|_{2}^{2}/2)$ · let's express this in terms of Z=AAT. $|A| = \sqrt{|AA^{\dagger}|} = \sqrt{|Z|}$ det (AB) = det (A) det (B) $\|A^{-1}x\|_{2}^{2} = (A^{-1}x)^{T}(A^{-1}x) = x^{T}(A^{-1})^{T}A^{-1}x = x^{T}(AA^{T})^{T}x = x^{T}\mathcal{E}'x$ $= \int_{X} f_{X}(x) = \frac{1}{\sqrt{(2\pi)^{n} |\Sigma|}} \exp\left(-\frac{1}{2} x^{T} Z^{T} x^{T}\right)$ · General case, for $\mu \neq 0$: apply the shift => $f_{X}(x) = \frac{1}{\sqrt{(2\pi)^{n} |z|}} \exp\left(-\frac{1}{2}(x-\mu)^{T} \overline{z}^{-1}(x-\mu)\right), \quad x \in \mathbb{R}^{n}$ (**) Vice versa: Vr.v. X with pdf (**) · Compare to pdf of X~N(4,02) in 1D: can be written as X=AZ+ u where Z~NO, Fu) $f_{\chi}(x) = \frac{1}{\sqrt{2-\sigma^{2}}} e_{\chi} p \left(- (x-\mu)^{2}/2\sigma^{2} \right).$ and AB invertible (take A=5) - 59 -

HW: ZER" is normal, BER" full rank => BZER" is normal.

• Why do indep r.vs
$$X_{1}, X_{2},...$$
 exist? Finite # first:
Prof (Coupling)
1. $\forall pmb.$ measure \forall on $(R^{*}, b(R^{*})) \exists r.vs X_{1},..., X_{n}$ with joint distribution v .
 $\frac{\psi}{2}$. $\forall pmb.$ measure ψ on $(R^{*}, b(R^{*})) \exists r.vs X_{1},..., X_{n}$ with margined distributions $\mu_{1},...,\mu_{n}$
Proof 1. Define $X(\omega):=\omega, \omega \in R^{*} \Rightarrow X$ has distribution v :
 $\begin{array}{c} p_{1}! \chi(\omega) \in b_{1}! = v(b) \\ \forall & B \in B(R^{*}). \end{array}$
2. Apply part 1 for $v:=\mu_{1}\times\dots\times\mu_{n} \Rightarrow OED$ by Pop p 40. \Box
• How to construct on sequence $X_{1},X_{2},...$ with given joint distributions
of $(X_{v-1}X_{v}) \forall n$? In particular, independent?
• Extend $v_{n}=\mu_{1}\times\dots\times\mu_{n}$ to $\forall=\mu_{1}\times\mu_{1}\times\dots}$?
Kolmogorou's Extension Thus
 $R^{N}:=$ sequences of real numbers, i.e. $\omega \in \mathbb{R}^{N}$ if $\omega=(\omega_{1},\omega_{2},...)$ with $\omega_{1}\in\mathbb{R}$
where a cylinder is a set of the form
 $A=I_{n}\times I_{2}\times\dots\times I_{n}\times\mathbb{R}\times\mathbb{R}^{n}$ $content new
 $=\{\omega \in \mathbb{R}^{N}: \omega_{n}\in I_{n},...,\omega_{n}\in \Gamma_{n}\}$ for some $n \in \mathbb{N}$
where $I_{1}:=(a_{1},b_{1})$ are intermeds (endpoints could $k=\pm\infty$)
• A sequence of measures $v_{1},v_{2},...$ on $(\mathbb{R}^{n}, B(\mathbb{R}^{n}))$ is consistent if
 $V_{n}(I_{1}\times\dots\timesI_{n})=V_{n+1}(I_{n}\times\dots\timesI_{n}\times\mathbb{R})$$

-62-

• It is enough to show:
$$A_n \in A, A_n \downarrow \emptyset \xrightarrow{2} \vee (A_n) \to 0$$

 $N \equiv A_n \in A : A_n \downarrow \emptyset \text{ and } \vee (A_n) \ge \ge > 0 \quad \forall n$
• WLOG A, are of the fillowing form (otherwise repeat A;'s as needed)
 $a_i \in A_i = \boxed{A_i} \times \mathbb{R} = [A_i = A_i \in \mathbb{R}] \times \mathbb{R} = [A_i = A_i \in \mathbb{R}] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} = [A_i = A_i \in \mathbb{R}] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} = [A_i = A_i = A_i = A_i = A_i = A_i \times \mathbb{R} \times$