General Multivariate Normal Distribution $N(\mu, \Sigma)$

- Recall standard normal $Z \sim N\left(0, I_{n}\right)$: pdf $f_{z}(z)=\frac{1}{(2 \pi)^{n / 2}} e^{-\|\mid\|_{2}^{2} / 2}, z \in R^{n}$

Def (General normal)
$X=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is a normal rivector if x is an affine transformation of a standard normal r. vector $Z \sim N\left(0, I_{n}\right)$, ie.
$X=A Z+\mu \quad$ for some invertible $A \in \mathbb{R}^{n \times n}, \mu \in \mathbb{R}^{n}$.

- $\operatorname{E} X=\mu$,

$$
\text { - } \operatorname{Cov}(x)=\mathbb{E}(A Z)(A Z)^{\top}=\mathbb{E}\left[A Z Z^{\top} A^{+}\right]=A \cdot \underbrace{\mathbb{E}\left(Z Z^{\top}\right) \cdot A^{\top}=A A^{\top}=\Sigma \Sigma}_{I_{d}}
$$

- pdt? Assume $\mu=0$ for simplicity

$$
\begin{aligned}
\forall B \in B\left(\mathbb{R}^{n}\right): \quad P\{X \in B\} & =P\left\{Z \in A^{-1}(B)\right\}=\int_{A^{-1}(B)} f_{Z}(z) d z . \\
& =\int_{B} \underbrace{A_{Z}\left(A^{-1} x\right)|A|^{-1} d x} \begin{array}{c}
\text { Change of var: } \\
x=A z \\
d x=|A| d z \\
\text { determinant } \\
\Rightarrow f_{X}(x)=f_{Z}\left(A^{-1} x\right)|A|^{-1}
\end{array} \stackrel{(*)}{=} \frac{1}{(2 \pi)^{n / 2}|A|} \exp \left(-\|\left. A^{-1} x\right|_{2} ^{2} / 2\right)
\end{aligned}
$$

- Let's expren this in terms of $\Sigma=A A^{\top}$.

$$
|A|=\sqrt{\left|A A^{\top}\right|}=\sqrt{|\Sigma|}
$$

$\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$

$$
\begin{aligned}
& \left\|A^{-1} x\right\|_{2}^{2}=\left(A^{-1} x\right)^{\top}\left(A^{-1} x\right)=x^{\top}\left(A^{-1}\right)^{\top} A^{-1} x=x^{\top}\left(A A^{\top}\right)^{-1} x=x^{\top} \Sigma^{-1} x \\
& \Rightarrow f_{x}(x)=\frac{1}{\sqrt{(2 \pi)^{n}|\Sigma|}} \exp \left(-\frac{1}{2} x^{\top} \Sigma^{-1} x^{\top}\right) .
\end{aligned}
$$

- General case, for $\mu \neq 0$: apply the shift \Rightarrow

$$
\begin{equation*}
f_{x}(x)=\frac{1}{\sqrt{(2 \pi)^{n}|\Sigma|}} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right), \quad x \in \mathbb{R}^{n} \tag{**}
\end{equation*}
$$

- Compare to pdf of $X \sim N\left(\mu, \sigma^{2}\right)$ in 1D:

$$
f_{x}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e_{x p}\left(-(x-\mu)^{2} / 2 \sigma^{2}\right) \text {. }
$$

Vice versa: \forall rv. x with pdf ($* *)$ combe written as $x=A z+\mu$ where $z \sim N\left(0, r_{n}\right)$ -59 - and $A B$ invertible (take $A=\sqrt{2}$)

SUMMART. A general normal r. vector X is an affine transformation of a standard normal riv. $Z \sim N\left(0, I_{n}\right)$.

- The pdf of X is (**) p.5q
- The distribution of X is determined by mean $\mu=\mathbb{E} X$ and covariance $\Sigma=\operatorname{Cov}(x)$. It is denoted $N(\mu, \Sigma)$

Def. R variables X_{1}, \ldots, X_{n} are jointly normal
if the random vector $X=\left(x_{1}, \ldots, x_{n}\right)$ has nounal distr.

- Their joint distr. is determined by the means and covariances
- Ex $\left\lvert\, \begin{aligned} & \mathbb{E}\left[x_{1}\right]=E\left[x_{2}\right]=0, \quad \operatorname{Var}\left(x_{1}\right)=1, \quad \operatorname{Var}\left(x_{2}\right)=4, \quad \rho_{x_{1}, x_{2}}=1 / 2 \\ & \text { Find the } 1 \text { af of }\left(x_{1} x_{2}\right)\end{aligned}\right.$

Find the pdf of $\left(x_{1}, x_{2}\right)$.

$$
\begin{aligned}
& \frac{1}{2}=\rho_{x_{1}, x_{2}}=\frac{\operatorname{Cov}\left(x_{1}, x_{2}\right)}{\sqrt{\operatorname{Var}\left(x_{1}\right) \cdot \operatorname{Vr}\left(x_{2}\right)}}=\frac{\operatorname{Cov}\left(x_{1}, x_{2}\right)}{1 \cdot 2} \Rightarrow \operatorname{Cov}\left(x_{3}, x_{2}\right)=1 . \\
& \Rightarrow \Sigma=\left[\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right] \Rightarrow \Sigma^{-1}=\frac{1}{3}\left[\begin{array}{cc}
4 & -1 \\
-1 & 1
\end{array}\right], \quad|\Sigma|=3 . \\
& f\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sqrt{3}} \exp \left(-\frac{1}{2} x^{\top} \Sigma^{-1} x\right)=\frac{1}{2 \pi \sqrt{3}} \exp \left(-\frac{4 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}}{6}\right) .
\end{aligned}
$$

Prop Jointly normal riv's are independent \Leftrightarrow they are uncorrelated.
Proof (\Rightarrow) is always true.
(\Leftrightarrow) Uncorrelated $\Rightarrow \Sigma=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right)$ where $\sigma_{i}^{2}=\operatorname{Var}\left(x_{i}\right)$

$$
\Rightarrow f_{x}(x) \text { factors: } f_{x}(x)=\prod_{i=1}^{n} \underbrace{\frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}}}_{!!} \exp \left(-\left(x_{i}-\mu_{i}\right)^{2} / 2 \sigma_{i}^{2}\right) \Rightarrow \text { indep. }
$$

Prop \forall riv's $Y_{1}, \ldots, Y_{n} \exists$ jointly normal rv's X_{1}, \ldots, X_{n} with $\mathbb{E} X_{i}=\mathbb{E} Y_{:}$and $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\operatorname{Cov}\left(Y_{i}, Y_{j}\right)$. "Gaussian model"

- Remark: \exists normal riv's x_{1}, x_{2} (But not jointly nornal), that are uncorrelated ant not independent
$H W: Z \in \mathbb{R}^{n}$ is normal, $B \in \mathbb{R}^{m \times n}$ full rank $\Rightarrow B Z \rightarrow \mathbb{R}^{m}$ is normal

Constructing independent Random variables

- Why do indep.r.v's x_{1}, x_{2}, \ldots exist? Finite \# first,

Prop (Coupling)

1. \forall prob. measure v on $\left(\mathbb{R}^{n}, B\left(\mathbb{R}^{n}\right)\right) \Rightarrow$ r.v's $X_{1}, \ldots X_{n}$ with joint distribution ν.
2. \forall prob measures μ_{1}, \ldots, μ_{n} on $(\mathbb{R}, \mathbb{B}) \exists$ indep riv's X_{1}, \ldots, X_{n} with marginal distributions μ_{1}, \ldots, μ_{n}

Proof 1. Define $X(\omega):=\omega, \omega \in \mathbb{R}^{n} \Rightarrow X$ has distribution ν :

$$
{\underset{U}{u}}_{\mathbb{P}}^{P}\{\underbrace{X(\omega)}_{\omega} \in B\}=v(B) \quad \forall B \in B\left(\mathbb{R}^{n}\right)
$$

2. Apply part 1 for $v:=\mu_{1} \times \cdots \times \mu_{n} \Rightarrow$ QED by Prop P. 40.

- How to construct ∞ sequence X_{1}, X_{2}, \ldots with given joint distributions of $\left(x_{1}, \ldots, x_{n}\right) \forall n$? In particular, independent?
- Extend $\nu_{n}=\mu_{1} \times \ldots \times \mu_{n}$ to $\nu=\mu_{1} \times \mu_{2} \times \ldots$?

Kolmogorov's Extension The

- $\mathbb{R}^{\mathbb{N}}:=$ sequences of real numbers, ie. $\omega \in \mathbb{R}^{\mathbb{N}}$ if $\omega=\left(\omega_{1}, \omega_{2}, \ldots\right)$ with $\omega_{i} \in \mathbb{R}$
- Cylinder σ-algebra $\quad B\left(\mathbb{R}^{\mathbb{N}}\right):=\sigma$ (cylinders)
where a cylinder is a set of the form

$$
\begin{aligned}
A & =I_{1} \times I_{2} \times \ldots \times I_{n} \times \mathbb{R} \times R \times \ldots<\mathbb{R}^{\mathbb{N}} \\
& =\left\{\omega \in \mathbb{R}^{\mathbb{N}}: \omega_{1} \in I_{1}, \ldots, \omega_{n} \in I_{n}\right\} \text { for some } n \in \mathbb{N}
\end{aligned}
$$

where $I_{i}=\left(a_{i}, b_{i}\right)$ are intervals (endpoints could be $= \pm \infty$)

- A sequence of measures ν_{1}, v_{2}, \ldots on $\left(\mathbb{R}^{n}, B\left(\mathbb{R}^{n}\right)\right)$ is consistent if

$$
V_{n}\left(I_{1} \times \cdots \times I_{n}\right)=V_{n+1}\left(I_{1} \times \cdots \times I_{n} \times \mathbb{R}\right)
$$

$\forall n \in \mathbb{N}$ and \forall intervals I_{i}.

Thy (Kolurgorov's Extension Then)
\forall consistent sequence of probability measures v_{1}, v_{2}, \ldots can be uniquely extended to a probability measure v on $\left(\mathbb{R}^{N}, B\left(\mathbb{R}^{N}\right)\right)$.

Proof of K.E.T. We will apply C.E.T for the algebra A generated by the cylinders, ie.

$$
A \in A \Leftrightarrow A=\bar{A}_{n} \times \mathbb{R} \times \mathbb{R} \times \ldots \quad \text { product of intervals, e.g. }
$$

for some $n \in \mathbb{N}$, where $\bar{A}_{n}=$ finite union of boxes

- Define ν on A fy $\nu\left(\bar{A}_{n} \times \mathbb{R} \times R \times \ldots\right):=\nu_{n}\left(\bar{A}_{n}\right)$.

Well defined by the consistency assum ion (check!)

- Obviously $\sigma(A)=B_{B\left(\mathbb{R}^{N}\right)^{5}}$ generated by cylinders.
- Hence, by C.E.T. it is enough to check that v is a premeasure on A, i.e is countably additive on A. So, enough to show:

$$
\begin{equation*}
v\left(\bigcup_{i=1}^{\infty} B_{i}\right) \stackrel{?}{=} \sum_{i=1}^{\infty} v\left(B_{i}\right) \text { whenever } B_{i} \in A \text { and } \bigcup_{i=1}^{\infty} B_{i} \in A \text {. } \tag{1}
\end{equation*}
$$

- We already know that v is finitely additive on A

$$
\begin{equation*}
v\left(\bigcup_{i=1}^{n} B_{i}\right)=\sum_{i=1}^{n} \nu\left(B_{i}\right) \quad \forall n \in \mathbb{N} \tag{2}
\end{equation*}
$$

because on these sets V coinsides with $v_{N(n)}$ by consistency assumption.

- $\operatorname{LHS}(2)=V_{N(n)}(11-") \leq 1 \Rightarrow \operatorname{RKS}(2)$ converges to $\sum_{1}^{\infty} V\left(B_{i}\right)$.

Subtract (2) from (1) \Rightarrow enough to show that

- It is enough to show: $A_{n} \in A, A_{n} \downarrow \varnothing \stackrel{?}{\Rightarrow} v\left(A_{n}\right) \rightarrow 0$

$$
\hat{N} \exists A_{n} \in A: A_{n} \downarrow \varnothing \text { and } \nu\left(A_{n}\right)>\varepsilon>0 \quad \forall n
$$

- WLOG A_{n} are of the following form (otherwise repeat A_{i} 's as needed)

$$
\begin{aligned}
a_{1} \in A_{1} & =\overline{A_{1}} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \ldots \\
U & a_{1}(1) \\
a_{2} \in A_{2} & =\frac{\bar{A}_{2}}{U} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \ldots \\
a_{2}(1) & a_{2}(2) \\
a_{3} \in A_{3} & =\begin{array}{r}
U \\
U
\end{array} \bar{A}_{3} \\
\ldots & a_{3}(1) \\
a_{3}(2) & a_{3}(3)
\end{aligned}
$$ where all $\bar{A}_{n} \subset \mathbb{R}^{n}$ ore finite unions of rectangles.

- First assume that all \bar{A}_{n} are compact
- Diagonal argument: choose $a_{n} \in A_{n} \quad \forall n$.
- First coordinate: $a_{n} \in A_{n}<A_{1} \quad \forall n \geqslant 1 \Rightarrow a_{n}(1) \in \bar{A}_{1}$

Compactness $\Rightarrow \ni$ convergent subsequence $a_{n_{k}}(1) \rightarrow x(1) \in \bar{A}_{1}$

- Second coordinate: $a_{n_{k}} \in A_{n_{k}}<A_{2} \quad$ if $n_{k} \geqslant 2 \Rightarrow\left(a_{n}(1), a_{n_{k}}(2)\right) \in \bar{A}_{2}$

Compactness $\Rightarrow \exists$ convergent subsequence $\left(a_{n_{k_{j}}}(1), a_{n_{k_{j}}}(2)\right) \rightarrow(x(1), x(2)) \in \widetilde{A}_{2}$

$$
\begin{aligned}
\Rightarrow & \exists x=(x(1), x(2), \ldots) \in \mathbb{R}^{N} \text { s.t. }(x(1), \ldots, x(n)) \in \bar{A}_{n} \forall n \\
& \Rightarrow x \in A_{n} \forall n \Rightarrow x \in \bigcap_{n=1}^{\infty} A_{n} \Rightarrow A_{n} \nmid \varnothing . \quad 丩
\end{aligned}
$$

- For general \bar{A}_{n}, use regularity to approximate A_{n} by compact sets:
- Bored measwes V_{n} are inner-regular, i.e. \exists compact $\bar{K}_{n}<\bar{A}_{n}$ st.

$$
v_{n}\left(\bar{A}_{n} \backslash \bar{K}_{n}\right) \leq \varepsilon / 2^{n+1} \quad \forall n
$$

$K_{n}:=\bar{K}_{1} \times \mathbb{R} \times \mathbb{R} \times \ldots$ like A_{n} 's. Then

- To make these sets decrease like A_{n} 's, let $\sum_{n=1}^{\infty} \varepsilon / 2^{n+1}$ (check!)

$$
B_{n}:=K_{n} \cap \cdots \cap K_{n}
$$

Then B_{n} decrease, and $v\left(B_{n}\right) \geqslant \frac{\Lambda 1}{V\left(A_{n}\right)}-\frac{V}{v\left(A_{n} \backslash B_{n}\right)} \geqslant \varepsilon / 2$.

- Run the diagonal argument for $B_{n}=\bar{B}_{n} \times R \times R \ldots \Rightarrow Q E D$.

