Cor (Product of ∞ many measures)
\forall probability measures μ_{1}, μ_{2}, \ldots on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ \exists unique prob measureVon $\left(\mathbb{R}^{N}, B\left(\mathbb{R}^{N}\right)\right)$ such that

$$
\begin{equation*}
\nu\left(B_{1} \times B_{2} \times \cdots \times B_{n} \times R \times R \times \cdots\right)=\mu_{1}\left(B_{1}\right) \cdots \mu\left(B_{n}\right) \quad \forall B_{1} \in \mathbb{B}(\mathbb{R}) \tag{x}
\end{equation*}
$$

This ν is called the product of $\mu_{i} s$, denoted

$$
v:=\mu_{1} \times \mu_{2} \times \cdots
$$

Proof $\nu_{n}:=\mu_{1} \times \cdots \times \mu_{n}$ are consistent
KIT. $\Rightarrow \exists$ extension ν for which $\operatorname{CKS}(*)=V_{n}\left(B_{1} \times \ldots \times B_{n}\right)=$ RUS $(*)$
Def (∞ many indep. r.v's) Riv's x_{1}, x_{2}, \ldots are independent if \forall finite subset of them is independent.

TuM (Existence) \forall prob. measures μ_{1}, μ_{2}, \ldots on $(\mathbb{R}, \mathbb{B}(\mathbb{R}))$ \exists independent r.v's X_{1}, X_{2}, \ldots with marginal distributions μ_{1}, μ_{2}, \ldots
$\xlongequal{\text { Proof }}$ Define $x(\omega)=\omega$ on $\left(\mathbb{R}^{N}, B\left(\mathbb{R}^{N}\right), \mu_{1} \times \mu_{2} \times \cdots\right)$

$$
\mathbb{P}\left\{x_{1} \in B_{1}, \ldots, x_{n} \in B_{n}\right\}=\underset{\mu_{1} x \ldots x \mu_{n}}{\underset{\sim}{\sim}\left\{\omega_{1} \in B_{1}, \ldots, \omega_{n} \in B_{n}\right\}=\mu_{1}\left(B_{1}\right) \cdots \mu_{n}\left(B_{n}\right)=P\left\{x \in B_{1}, \ldots, x_{n} \in B_{n}\right\}}
$$

Ex (o) An explicit construction of independent random variables on $([0,1), B(0,1))$, leberge $)$
Rademacher functions:

They define independent Rademacher random variables that take values ± 1
(b) Digits of a random $X \sim$ Unif $(0,1)$ with prob $=1 / 2 \mathrm{each}$

$$
0.101101101 \ldots
$$

$\leftarrow H W J$

Remark (Uncountable K.E.T.): $\mathbb{N} \longmapsto T$, an arbitrary set.

- \mathbb{R}^{\top} consists of $\omega=\left(\omega_{t}\right)_{t \in T}$; equivalently, functions $\omega: T \rightarrow \mathbb{R}$
- Cylinder σ-algebra $\sigma\left(\mathbb{R}^{T}\right)=\sigma($ cylinders $)$, where a cylinder is a set of the form
$A=\prod_{t \in T} I_{t}$, and each I_{t} is either an interval $\left(a_{t}, b_{t}^{\psi}\right)$ or \mathbb{R} where all $I_{t}=\mathbb{R}$ for all but a finite number of the factors.
- For each $n \in \mathbb{N}$ and $t_{1}, \ldots, t_{n} \in T$, consider a measure $\nu_{t_{1}, \ldots, t_{n}}$ on $\left(\mathbb{R}^{n}, B\left(\mathbb{R}^{n}\right)\right.$).
- These measures are consistent if
(a) $V_{t_{1}, \ldots, t_{n}}\left(I_{1} \times \ldots \times I_{n}\right)=V_{t_{1}, \ldots, t_{n}, t_{n+1}}\left(I_{1} \times \ldots \times I_{n} \times R\right)$
$\forall n \in \mathbb{N}$ and \forall intervals I_{i}
this extra assumption is needed
(6) $\left.\begin{array}{c}\nu_{\left.t_{\pi(1)}\right)}, \ldots, t_{\pi(n)}\left(I_{\pi(1)} \times \cdots \times I_{\pi(n)}\right) \\ \forall n \in \mathbb{N}, \pi \in S(n), \text { intervals } I_{i}\end{array}\right\} \leftarrow$ because T may not be totally ordered (unlike N) If if is, insist on $t_{1}<t_{2}<\ldots<t_{n}$ and drop it.

THM (Kolurgorov's Extension Thu - general Form)
\forall consistent sequence of probability measures
can be uniquely extended to a probability measure v on $\left(\mathbb{R}^{\top}, B\left(\mathbb{R}^{\top}\right)\right.$).

- $\Rightarrow \ni$ uncountally many independent riv's, e.g.
$\left(z_{t}\right)_{t \in \mathbb{R}}$ where all z_{i} are iid $N(0,1)$
"White noise"
However, cylinder σ-algebra is coarse (access to finite \# of $z_{i}^{\prime} s$) countable
- \rightarrow stochastiz processes.

BOREL-CANTELLI LEMMA

- Consider \forall events E_{1}, E_{2}, \ldots
limsup $\mathbb{1}_{E_{n}}=1 \Leftrightarrow E_{n}$ ocuir infinitely often
$\Leftrightarrow \forall m \in \mathbb{N} \exists n \geqslant m$: En occurs
$\Leftrightarrow \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} E_{n}$ occurs.
$\liminf \mathbb{1}_{E_{n}}=1 \Leftrightarrow E_{n}$ occur eventually

$\Leftrightarrow \exists m \in \mathbb{N} \quad \forall n \geqslant m$: En occurs
$\Leftrightarrow \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E_{n}$ occurs.
Def - limsup $E_{n}:=\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} E_{n}:=$ " E_{n} occur infinitely often"
- liming $E_{n}:=\bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E_{n}:=" E_{n}$ occur eventually"

$$
\mathbb{1}_{\text {limsup } E_{n}}=\limsup \mathbb{1}_{E_{n}} ; \quad 1_{\text {liming } E_{n}}=\liminf \mathbb{1}_{E_{n}} .
$$

Ex: Fatou lemma: $\mathbb{E} \mathbb{1}_{\text {limsip } E_{n}} \geq \operatorname{linsp} \mathbb{E} \mathbb{1}_{E_{n}}$

$$
\mathbb{P}\left(\operatorname{limsp} E_{n}\right) \geq \operatorname{limsp} P\left(E_{n}\right)
$$

let's upgrade RKS to 1 if E_{n} are independent:
Borel-Cantelli lemma Let E_{1}, E_{2}, \ldots be events.
(1) If $\sum_{n=1}^{\infty} P\left(E_{n}\right)<\infty$ then $P\left\{E_{n}\right.$ occur ∞ often $\}=0$
(2) If $\sum_{n=1}^{\infty} P\left(E_{n}\right)=\infty$ and E_{n} are independent then $P\left\{E_{n}\right.$ occur ∞ often $\}=1$.

Proof (1) By def, $\forall m \in \mathbb{N}$: union bound

$$
\begin{aligned}
\mathbb{P}\left(\text { limsup } E_{n}\right) \leq \mathbb{P}\left(\bigcup_{n=m}^{\infty} E_{n}\right) \stackrel{\downarrow}{\leq} \sum_{n=m}^{\infty} \mathbb{P}\left(E_{n}\right) & \rightarrow 0 \text { as } m \rightarrow \infty . \\
\text { de Morgan } & \Rightarrow=0 .
\end{aligned}
$$

(2) $\quad\left(\limsup E_{n}\right)^{c} \stackrel{\downarrow}{=} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E_{n}^{c} \leq \sum_{m=1}^{\infty} \underbrace{P\left(\bigcap_{n=m}^{\infty} E_{n}^{c}\right)}_{\text {Enough to show that }{ }_{0}^{\prime \prime} \quad \forall m}$

$$
\begin{align*}
\forall M \geq m: \mathbb{P}\left(\bigcap_{n=m}^{M} E_{n}^{c}\right) & =\prod_{\uparrow=m}^{M} \underbrace{M}_{\text {independence }} \underbrace{P\left(E_{n}^{c}\right)}_{1-P\left(E_{n}\right)} \leq e^{-\mathbb{P}\left(E_{n}\right)} \quad\left(1-x \leq e^{-x}\right) \tag{*}\\
& \leq \exp (-\underbrace{-\sum_{n=m}^{M} P\left(E_{n}\right)}_{\infty}) \rightarrow 0 \text { as } M \rightarrow \infty
\end{align*}
$$

$\Rightarrow(*)$ follows by continuity of probability
Remarks (a) $B C 2$ may fail for dependent events, egg. for $E_{n}=E$.
(b) For independent events, $B C$ implies that $P\left\{E_{n}\right.$ occur ∞ often $\} \in\{0,1\} \quad$ "zero-one law" More 0/1 laws later.

Cor (Infinite monkey theorem)
A monkey that is hitting keys at random
will eventually type type the complete works of W. Shakespeare with prob-1.
(and will retype it ∞ many times)

$$
\left.\begin{array}{rl}
\text { Proof } E_{1} & =\{\text { first } N \text { letters }=\text { works of WS }\} \\
E_{2} & =\{\text { next } N \text { letters }=\text { works of WS) }
\end{array}\right\} \text { independent } \begin{aligned}
& B C 2 \\
& \cdots \\
& P\left(E_{n}\right)
\end{aligned}=p>0 \quad \forall n \Rightarrow \sum_{n} P\left(E_{n}\right)=\infty \xrightarrow{B C}\left(E_{n} \text { occur } \infty \text { often }\right)=1 \text {. B }
$$

