Example (maximum of gaussians) let g_{1}, g_{2}, \ldots be iii $N(0,1)$ ru's. Then

$$
\limsup _{n} \frac{g_{n}}{\sqrt{2 \ln n}}=1 \quad \text { ass. }
$$

Proof The condusion is equivalent to the following statement. $\forall \varepsilon>0$:

$$
\begin{equation*}
\mathbb{P}\left\{g_{n}>\sqrt{(1+\varepsilon) 2 \ln n} \text { i.0. }\right\}=0 \tag{1}
\end{equation*}
$$

AND

$$
\begin{equation*}
\mathbb{P}\left\{g_{n}>\sqrt{(1-\varepsilon) 2 \ln n} \quad \text { i. } 0 .\right\}=1 \tag{2}
\end{equation*}
$$

To prove this, use Gaussian tail bounds (p-28): if $g \sim N(0,1)$, then

$$
\left(\frac{1}{t}-\frac{1}{t^{3}}\right) \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} \leq \mathbb{P}\{g>t\} \leq \frac{1}{t \sqrt{2 \pi}} e^{-t^{2} / 2} \quad \forall t>0
$$

In particular, $\forall \varepsilon>0 \exists t(\varepsilon)$ st:

$$
e^{-\left(1+\frac{\varepsilon}{2}\right) t^{2} / 2} \leq \mathbb{P}\{g>t\} \leq e^{-t^{2} / 2} \quad \forall t>t(\varepsilon)
$$

Hence:

- $\mathbb{P}\left\{g_{n}>\sqrt{(1+\varepsilon) 2 \ln _{n}}\right\} \leqslant \exp \left(-(1+\varepsilon) \ln _{n}\right)=n^{-(1+\varepsilon)}$ is summable
\Rightarrow (1) follows from Bord-Cantelli I.
- $\mathbb{P}\left\{g_{n}>\sqrt{(1-\varepsilon) 2 \ln n}\right\} \geqslant \exp (-\underbrace{(1-\varepsilon)}_{11+\frac{\varepsilon}{1-\varepsilon / 2-\varepsilon^{2} / 4 \leq 1-\varepsilon / 2}} \ln n) \leq n^{-(1-\varepsilon / 2)}$ is Not summable
\Rightarrow (2) follows from Bord-Cantelli II.

Example ("Runs") An infinite monkey is bitting keys at random. How much of William Shakespeare's work will be typed by time n ?

Formally: f_{x} an infinte word $\omega=\left(\omega_{1}, \omega_{2}, \ldots\right)$
e.g. $W=$ "TOBEORNOTTOBE...
and a condom word $X=\left(X_{1}, X_{2}, \ldots\right)$ with all $X_{i} \sim$ Unit (English alphabet) run of length $2 \quad$ run of length 4 independent
egg. $X=$ "ABRATOCADATOBE SMTHTOBEORIWANTABANANA..." $L_{n}=6$

$$
l_{6}=2, \quad l_{7}=0
$$

$l_{k}:=\max \left\{r: X_{k}=w_{k}, X_{k-1}=w_{k-1}, \ldots, X_{k-r+1}=w_{k-r+1}\right\} \quad$ (length of a run at time)

$$
L_{n}:=\max _{1 \leqslant k \leq n} e_{k}
$$

(max length of a run by time n)
$\xrightarrow{\text { Thu }} \frac{L_{n}}{\log _{26} n} \rightarrow 1$ ass.
(26= size of English alphabet)
Proof Upper bound:
$\mathbb{P}\left\{\ell_{n} \geqslant r\right\}=\mathbb{P}\{r$ last letters are correct $\}=\frac{1}{26^{r}}$
$\Rightarrow \mathbb{P}\left\{l_{n}>(1+\varepsilon) \log _{26} n\right\} \leq \frac{1}{26^{(1+\varepsilon)} \log _{26} n}=\frac{1}{n^{1+\varepsilon}}$ is summable
\Rightarrow by Borel-Cantelli I,

$$
P\left\{l_{n}>(1+\varepsilon) \log _{26} n \text { io. }\right\}=0
$$

\Rightarrow with probability 1 ,

$$
\left.\begin{array}{ll}
\exists m \in N \quad \forall n \geqslant m: \quad l_{n}<(1+\varepsilon) \log _{26} n \\
\forall n<m: & l_{n} \leq n<m \text { trivially }
\end{array}\right\} \Rightarrow l_{n}<(1+\varepsilon) \log _{26} n+m
$$

Moreover, $\forall n<m$: $e_{n} \leq n<m$ trivially

$$
\begin{align*}
& \Rightarrow \quad L_{n} \leq(1+\varepsilon) \log _{26} n+m \\
& \Rightarrow \quad \frac{L_{n}}{\log _{26} n} \leq 1+\varepsilon+\frac{m}{\log _{26} n} \\
& \begin{array}{l}
\text { as } n \rightarrow \infty \\
\Rightarrow \operatorname{limnp}_{n} \frac{L_{n}}{\log _{26} n} \leq 1+\varepsilon \quad \forall \varepsilon>0
\end{array} \\
& \Rightarrow \text { lisp } \frac{\operatorname{Ln}_{n}}{\log _{26} n} \leq 1 \text { ass. } \tag{ㄱ}
\end{align*}
$$

lower bound
Partition $\{1, \ldots, n\}$ into $\frac{n}{(1-\varepsilon) \log _{26} n}$ blocks of length $(1-\varepsilon) \log _{26} n$. Then

$$
\begin{aligned}
& \mathbb{P}\left\{\frac{L_{n}}{\log _{26} n}<1-\varepsilon\right\} \leq \mathbb{R}\left\{\begin{array}{c}
\text { none of the blocks } \\
\text { is a run }
\end{array}\right\} \quad\binom{\text { if some block is a run },}{L_{n}>(1-\varepsilon) \log _{26} n} \\
& \leq \underbrace{\left.1-\frac{1}{26^{(1-\varepsilon) \log _{26} n}}\right) \stackrel{\frac{n}{(1-\varepsilon) \log _{26} n}}{\kappa} \# 610 \mathrm{cks}}_{\operatorname{Prob}(\text { given } b l o c k=\text { ref })} \text { (independent) } \\
& =\left(1-\frac{1}{n^{1-\varepsilon}}\right)^{\frac{n}{(1-\varepsilon) \log _{2 c} n}} \\
& \leq \exp \left(-\frac{n}{n^{1-\varepsilon}(1-\varepsilon) \log _{26} n}\right) \quad\left(1-x \leq e^{-x}\right) \\
& =\exp \left(-\frac{n^{\varepsilon}}{(1-\varepsilon) \log _{26} n}\right) \text { is summable. }
\end{aligned}
$$

\Rightarrow by Borel-Cantelli I,

$$
\mathbb{P}\left\{\frac{\operatorname{Ln}}{\log _{26} n}<1-\varepsilon \text { io. }\right\}=0
$$

\Rightarrow with probability 1, ヨm $\forall n \geqslant m: \quad \frac{\operatorname{Ln}}{\log _{26} n} \geqslant 1-\varepsilon$

$$
\Rightarrow \liminf \frac{L_{n}}{\log _{26} n} \geqslant 1-\varepsilon \Rightarrow \liminf \frac{L_{4}}{\log _{26} n}=1 \text { ass. }
$$

Saint Petersburg Paradox II
Consider an ∞ sequence of games in which one loses $\$ 2^{n}$ with prob. $\frac{1}{2^{n}+1}$,
wins $\$ 1$ with prob. $\frac{2^{n}}{2^{n}+1}, \quad n=1,2,3, \ldots$

- $X_{n}=$ winnings of nth game. $\mathbb{E} X_{n}=-2^{n} \cdot \frac{1}{2^{n}+1}+1 \cdot \frac{2^{n}}{2^{n}+1}=0$ $X:=$ total winnings $\Rightarrow \mathbb{E} X=\sum_{n=1}^{\infty} \mathbb{E} X_{n}=0$
- \mathbb{P} (losses occur ∞ often $)=0$ by Borel-Cantelli

$$
(E_{n}:=\text { " } n \text {-th game is lost" } \Rightarrow \sum_{n=1}^{\infty} \underbrace{P\left(E_{n}\right)}_{\frac{1}{\frac{1}{2^{n+1}}}}<\infty)
$$

Hence: with probability 1, starting from tome game
we will keep winning and will never lose again \Rightarrow winnings $=(\infty)$
But ow expected winnings $=0$!?
Resolution of paradox: $\mathbb{E X}$ does vo exist:
the limit in (*) is not justified

Example (~E. Stein's covering lemma)
THM let $A_{1}, A_{2}, \ldots \subset S^{n-1}$ be any measurable subsets such that

$$
\sum_{i=1}^{\infty} \mu_{\hat{j}}\left(A_{i}\right)=0
$$

"surface area"
Then $\exists U_{1}, U_{2}, \ldots \in O(n)$ such that μ-almost every point $x \in S^{n-1}$ belongs to ∞ many sets $U_{i} A_{i}$

Proof let $U_{1}, U_{2}, \ldots \in U_{n i f}(O(n))$ and $X \sim U_{n i} f\left(S^{n-1}\right)$, all independent. Haar measure μ, prob.meas.wlon
Then $U_{1}^{-1} X, U_{2}^{-1} X, \ldots \in$ Unif $\left(S^{n-1}\right)$ independent (check!)
Consider events

$$
E_{i}:=\left\{U_{i}^{-1} x \in A_{i}\right\}=\left\{x \in U_{i} A_{i}\right\}
$$

Note that E_{i} are independent $\& \quad P\left(E_{i}\right)=\mu\left(A_{i}\right)$ by (*).
By assumption, $\sum_{i=1}^{\infty} P\left(E_{i}\right)=\infty$.
Borel-Cantelli II \Rightarrow

$$
\begin{align*}
& 1=\mathbb{P}\left\{E_{i} \text { occur i.o. }\right\}=\mathbb{E} \underbrace{\{ }_{\left\{x \in U_{i} A_{i} \text { i.o. }\right\}} \\
\Rightarrow & \mathbb{1}_{\left\{x \in U_{i} A_{i} \text { i.0. }\right\}}=1 \text { a.s. }(* * x)_{1}
\end{align*}
$$

${ }_{\text {w.r.to }} U_{i}$'s and x
$\stackrel{\text { rubini }}{\Rightarrow} \exists U_{i}:(* * *)$ holds ass. w.r.to x (choc kl)

