Example (maximum of gaussians) (et
$$g_1, g_2, \dots$$
 be iid $N(0,1)$ r.v's. Then

$$\limsup_{n} \frac{g_n}{\sqrt{2 \ln n}} = 1 \quad a.s.$$

Proof The condusion is equivalent to the following statement:
$$\forall \varepsilon > 0$$
:

$$\begin{array}{l}
P \left\{ q_{n} > \sqrt{(1+\varepsilon)} 2 \ln n \quad i.o. \right\} = 0 \quad (i) \\
\text{AND} \qquad P \left\{ q_{n} > \sqrt{(1-\varepsilon)} 2 \ln n \quad i.o. \right\} = 1 \quad (z) \\
\end{array}$$
To prove this, use Gaussian tail bounds $(p.28)$: if $q_{n} N(o,1)$, then
 $\left(\frac{1}{t} - \frac{1}{t^{3}}\right) \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} \leq P \left\{ q_{n} > t \right\} \leq \frac{1}{t\sqrt{2\pi}} e^{-t^{2}/2} \quad \forall t > 0 \\$
In particular, $\forall \varepsilon > 0 \Rightarrow t(\varepsilon) st$:

$$e^{-(1+\frac{\varepsilon}{2})t/2} \leq P\{q>t\} \leq e^{-t/2} \quad \forall t>t(\varepsilon)$$
Hence:
• $P\{q_n > \sqrt{(1+\varepsilon)} 2 l_{nn}\} \leq exp(-(1+\varepsilon)l_{nn}) = n^{-(1+\varepsilon)}$ is summable
=) (i) follows from Borel-Cantelli I.
• $P\{q_n > \sqrt{(1-\varepsilon)} 2 l_{nn}\} \geq exp(-(1+\frac{\varepsilon}{2})(1-\varepsilon) l_{nn}) \leq n^{-(1-\frac{\varepsilon}{2})}$ is NoT summable
 $1-\frac{\varepsilon}{2}-\frac{\varepsilon}{2}\leq 1-\frac{\varepsilon}{2}$

.

-68-

Example ("Runs") An infinite monkey is builting keys at readar.
How much of William Shakespeare's work with the typed by time n?
Formely: By an infinite word
$$W = (W_1, W_2, ...)$$

cg. W^{-1} TOBE ORNOT TOBE..."
and a condom word $X = (X_1, X_2, ...)$ with all $X_1 \sim Unit (English alphabet)$
we oblight?
cg. $X = "nBRATIO CADA TOBE SHITH TOBEOR!WANTABANANA..." $L_n = 6$
 $U_1 \cup U \in T$?
 $L_n = Max Ch (X_n = W_{n-1}, ..., X_{k-rel} = W_{k-rel})$ (length of a run at lively)
 $L_n := max Ch (may length of a run by time n)$
 $Thus $\frac{L_n}{bg_{21}n} \rightarrow 1$ a.s.
 $(26 - size of English alphabet)$
 $Proof [Upper bound]:$
 $P(L_n > (1 + \epsilon) [cg_{11}n] = \frac{1}{26}$ is summable
 $\Rightarrow by Bord-Cantelli I, P(n) [cg_{12}n] = \frac{1}{n!+\epsilon}$ is summable
 $\Rightarrow with Probability 1 = \frac{1}{26} (1 + \epsilon) [cg_{12}n] = 0$
 \Rightarrow with Probability 1 = $l_n \le (1 + \epsilon) [cg_{12}n]$
 $\Rightarrow L_n \le (1 + \epsilon) [cg_{11}n] = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{11}n] = 1 = 0$
 $\Rightarrow With Probability 1 = minity readon
 $\Rightarrow W_n = M + (1 + \epsilon) [cg_{12}n] = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{12}n] = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{12}n] = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{12}n] = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow L_n \le (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow L_n \le (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = p [cg_{12}n] = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = p [cg_{12}n] = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = p [cg_{12}n] = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = p [cg_{12}n] = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = p [cg_{12}n] = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = p [cg_{12}n] = (1 + \epsilon) [cg_{12}n] + Inn = 0$
 $\Rightarrow U_n = p [cg_{12}n] = (1 + \epsilon) [cg_{12}n] + In$$$$

lower bound :
Partition {1,..,n} into
$$\frac{n}{(1-\epsilon)\log_{2\epsilon}n}$$
 blocks of length $(1-\epsilon)\log_{2\epsilon}n$. Then
 $P\left\{\frac{L_n}{\log_{2\epsilon}n} < 1-\epsilon\right\} \leq P\left\{\frac{none}{1s} \text{ of the blocks}\right\}$ (if some block is a run,
 $\leq \left(1 - \frac{1}{26} + \epsilon\right)\log_{2\epsilon}n$)
 $\leq \left(1 - \frac{1}{26} + \epsilon\right)\log_{2\epsilon}n$
 $= \left(1 - \frac{1}{n^{1-\epsilon}}\right)^{\frac{n}{(1-\epsilon)\log_{2\epsilon}n}}$ (independent)
 $Pob(\text{given block = run})$
 $= \left(1 - \frac{1}{n^{1-\epsilon}}\right)^{\frac{n}{(1-\epsilon)\log_{2\epsilon}n}}$ ($1-\epsilon \in e^{-\epsilon}$)
 $\leq \exp\left(-\frac{n}{n^{1-\epsilon}(1-\epsilon)\log_{2\epsilon}n}\right)$ ($1-\epsilon \in e^{-\epsilon}$)
 $= \exp\left(-\frac{n^{\epsilon}}{(1+\epsilon)\log_{2\epsilon}n}\right)$ is summable.

$$=) \text{ by Borel-Cantelli I,} \qquad P\left\{\frac{L_n}{\log_{26}n} < 1-\epsilon \text{ i.o.}\right\} = 0$$

$$=) \text{ with probability 1, } \exists m \forall n \ge m: \quad \frac{L_n}{\log_{26}n} \ge 1-\epsilon$$

$$\Rightarrow \liminf \frac{L_n}{\log_{26}n} \ge 1-\epsilon \quad \Rightarrow \quad \liminf \frac{L_n}{\log_{26}n} = 1 \text{ a.s.} \quad \bigcirc$$

Saint letersburg faredox II
Consider an or sequence of games in which one
loses \$2ⁿ with prob.
$$\frac{1}{2^{n}+1}$$
,
wins \$1 with prob. $\frac{2^{n}}{2^{n}+1}$, $h=1,2,3,...$
 $X_{n} = \text{winnings of n'th game}$. $E X_{n} = -2^{n} \cdot \frac{1}{2^{n}+1} + 1 \cdot \frac{2^{n}}{2^{n}+1} = 0$
 $X = \text{total winnings} = E X = \sum_{n=1}^{\infty} E X_{n} = 0$ (*)
 $P(\text{losses occur so often}) = 0$ by Borel-Cantelli
 $\left(E_{n} := \text{`n-th game is lost"} \Rightarrow \sum_{n=1}^{\infty} P(E_{n}) < \infty \right)$
Hence: with probability 1, starting from some game
we will keep winning and will never lose again. \Rightarrow withings = ∞
But our expected winnings = 0 1?
Revolution f paradox: EX does up exist;

the limit in (+) is not justified

Example (~ E. Stein's covering lemma)
The let
$$A_1, A_2, \dots \in S^{n-1}$$
 be any measurable subsets such that
 $\sum_{i=1}^{\infty} \mu(A_i) = 0.$
"surface area"
Then $\exists \ U_i, U_2, \dots \in O(n)$ such that μ -almost every point $x \in S^{n-1}$
belongs to co many sets U_iA_i .
Proof let $U_i, U_2, \dots \in Unif(O(n))$ and $X \sim Unif(S^{n-1})$, all independent.
Hear measure μ , prod. meas. U.C.
Then $U_i^{-1}X, U_2^{-1}X, \dots \in Unif(S^{n-1})$ independent (check!) (*)
Consider events
 $E_i := \{U_i^{-1}X \in A_i\} = \{X \in U_iA_i\}$
Note that E_i are independent $\notin P(E_i) = \mu(A_i)$ by (*).
By assumption, $\sum_{i=1}^{\infty} P(E_i) = \infty$.
Borel-Cantelli $\Pi \implies$
 $1 = P\{E_i \ occur i.o.\} = E \mathbb{1}_{\{X \in U_iA_i \ i.o.\}}$
 $\Rightarrow \mathbb{1}_{\{X \in U_iA_i \ i.o.\}} = 1$ a.s. (+**) \prod
 $u_i try U_i's and X
 $i = \exists U_i \ i.m$ bods as write X (check!)$