(7) Break a stick at 2 random points:

$$
\Omega=\{(x, y): x, y \in[0,1]\}=[0,1]^{2}
$$

$\mathbb{P}=$ lebesgue meas (area)
$F=$ Bored σ-algebra.
(8) Pick 2 random points on a circle

$$
\Omega=\left\{(x, y): x, y \in S^{\prime}\right\}=S^{1} \times S^{1}=\mathbb{T}^{2} \quad \text { (torus) }
$$

with sides glued.
$F=$ Bore; $\mathbb{P}=$ uniform on $[0,2 \pi]^{2}$, i.e. $\quad \mathbb{P}(E)=\frac{\text { Area }(E)}{4 \pi^{2}} \quad \forall E \in F$

Example: $\mathbb{P}\{x, y$ form an acute angle $\}=\mathbb{P}(E)=\frac{\operatorname{Area}(E)}{4 \pi^{2}}=\frac{1}{2}$

A symmetry proof?
"Geometric probability"
(9) Buffon Needle: "Suppose we have a floor made of parallel strips of wood, each of width 1 . Drop a needle of length 1 on the floor. What is the probability that the needle conses a line between two strips?

Solution: Needle's (direction, location) is random, uniformly distributed Parametrise $\pi^{2} \downarrow$
$\binom{\theta:=$ acute angle between needle and parallel lines }{$x=$ distance from center of needle to closest parallel line }
$\Omega=\left\{(\theta, x): \theta \in\left(0, \frac{\pi}{2}\right], x \in\left[0, \frac{1}{2}\right]\right\} ; \quad F=$ Bocel σ-algebra.
F=Borel; $\mathbb{P}=$ uniform, ie. $\quad P(E)=\frac{\operatorname{Area}(E)}{\pi / 4}$

$$
E:=\text { "needle crosses a line" }=\left\{(\theta, x) \in \Omega: x \leq \frac{1}{2} \sin \theta\right\}
$$

$$
P(E)=\frac{4}{\pi} \int_{0}^{\pi / 2} \frac{1}{2} \sin (\theta) d \theta=\frac{2}{\pi}
$$

\Rightarrow Computing π empirically $(\longrightarrow L L N)$
(10) Random graphs. Fix n vertices $\{1, \ldots, n\}$, draw M edges at random $\Omega=\{$ all graphs on $\{1, \ldots, n\}$ with M edges $\}$
キ $=2^{\Omega}$
$P=$ uniform. $\quad|\Omega|=\binom{N}{M}$ where $N=\binom{n}{2}$
$\Rightarrow \forall$ graph $G \in \Omega, \quad \mathbb{P}(\{G\})=\frac{1}{|\Omega|}=\frac{1}{\left(N_{M}\right)}$
Erdös-Rényi model $G(n, M)$
Examples (a) \forall given vertices i, j,

$$
\mathbb{P}(i, j \text { are connected })=\frac{\#\{G \in \Omega \text { in which } i, j \text { are connected }\}}{\binom{N}{M}}=\frac{\binom{N-1}{M-1}^{*}}{\binom{N}{M}}=\frac{M}{N} \text {. }
$$

(6) $\mathbb{P}(G$ is connected $) \approx\left\{\begin{array}{ll}1 & \text { if } \frac{M}{N}>(1+\varepsilon) \frac{\ln n}{n} \\ 0 & \text { if } \frac{M}{N}<(1-\varepsilon) \frac{\ln n}{n}\end{array}\right\} \quad$ for \forall fixed $\varepsilon>0$
(Erdos-Réngi phasetransition) and $n \rightarrow \infty$
(11) Random matrices $A=n \times n$ matrix whose all entries are random ± 1 :

$$
\begin{aligned}
& \Omega=\{-1,1\}^{n \times n} \\
& F=2^{\Omega} \\
& \mathbb{P}=\text { uniform }
\end{aligned}
$$

Example: $P(A$ is invertible $) \geqslant 1-\left(\frac{1}{2}+o(1)\right)^{n} \quad$ [K. Tikhomirov 2018]
(12) Haar measure "Random rotations",
$\Omega=O(n)$, orthogonal group
$F=$ Morel σ-algebra $\left(\begin{array}{ll}\text { metric given } R_{y} \text { Frobenius norm: } & \forall U, V \in O(n): \\ \|U-V\|_{F}^{2}=\sum_{i, j=1}^{n}\left(U_{i j}-V_{i j}\right)^{2}\end{array}\right)$
THM [Haar] \exists unique probability measure \mathbb{P} on (Ω, F) that is invariant:

$$
\mathbb{P}(\boldsymbol{V}(E))=\mathbb{P}(E) \quad \forall E \subset F, \quad V \in O(n)
$$

P is called Haar measure on $O(n)$
Extension: $O(n) \longrightarrow \forall$ locally compact topological group, e.g. SO(n)

