Application :

 $\begin{array}{c} \underbrace{\text{Occupancy Problem}}_{N \text{ bolds}} & \text{Drop } m \text{ balls into } n \text{ Gins independently at random.} \\ & \text{What is the distribution of the fraction of empty firs?} \\ & \text{ the figure of empty firs} = S_n = X_1 + \dots + X_n \quad \text{where } X_i = \begin{cases} 1 & \text{cf Bin } i \text{ is empty} \\ 0, & \\ 0, & \\ \end{cases} \\ & \text{Kingety } \left((1 - Y_n)^m \right) \quad \underbrace{\text{NoT independent}}_{n \text{ cos } n \text{ co$

 $\frac{\Pr{of}}{\Pr{of}} : By WLLN (remark p. 78), if suffices to check that <math>X_i$ are negatively correlated Heuristically, this is true: an empty Bin increases offer bins to be full. Formally: $\frac{\operatorname{Gov}(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \cdot \mathbb{E}[X_j]$ $\frac{\| \cdot \| \cdot \mathbb{E}[X_j]}{\left(\frac{n-2}{n}\right)^n} \stackrel{?}{\underset{i=1}{\leftarrow} \left(\frac{n-1}{n}\right)^{2m}} - \frac{\mathbb{E}[X_i - \frac{2}{n}] + \frac{1}{n^2}}{1 - \frac{2}{n}} \quad \text{True}[\cdot, 0].$

 $\frac{\text{Remark}}{\text{depend on n}} \text{ The will does not apply directly since the distributions of each X;} \\ \frac{\text{depend on n}}{\text{depend on n}} (\exists we have a "triangular array" of X;) \\ \text{But the proof of WILN works fine.}, KW.$

Example: Approximate Caratheodory Theorem [see my HDP book]
Def The convex hull of a set
$$T \subset \mathbb{R}^{d}$$
, denoted conv(T), is the smallest convex set
that contains T . Equivalently,
 $x \in conv(T) \Leftrightarrow x = \sum_{i=1}^{m} \lambda_i z_i$ for some $\lambda_i \ge 0$, $\sum_{i=1}^{m} \lambda_i = 1$, $z_i \in T$
(convex combination)
Thus (Caratheodory) $M = d + 1$ suffices and is optimal
in general
But if we allow to approximate x ,
we get a dramatic improvement:
Thus (Approximate Caratheodory) (at $T \subset unit$ ball of \mathbb{R}^{d}
Then $\forall x \in conv(T)$, $\forall k \in \mathbb{N} \exists z_{1, -y} z_n \in T$:
 $\|x - \frac{1}{n} \sum_{i=1}^{m} z_i\|_{2}^{2} = \frac{1}{\sqrt{n}}$

· Dimension-free; does not depend on geometry of T !

Proof ("Empirical method", B. Maurey)
• Fix
$$x \in Conv(T)$$
, express it as a convex condition
 $x = \sum_{i=1}^{m} \lambda_i z_i$, $\lambda_i z_0$, $\sum_{i=1}^{m} \lambda_i = 1$, $z_i \in T$.
• Interpret λ_i as probabilities, the sum as expectation
(at r.vector Z take value Z_i with Prob. λ_i
 $\Rightarrow x = EZ$
• Consider indep copies Z_1, Z_2, \dots of Z
 $SLLN: \frac{1}{n} \sum_{i=1}^{n} Z_i \rightarrow EZ = X$ a.s.
• Error:
 $E \| x - \frac{1}{n} \sum_{i=1}^{n} Z_i \|_2^2 = E \| + \sum_{i=1}^{n} (Z_i - x) \|_2^2$
Analog of $Var(sum) = sum (Variance)$ in R^d (Dry)
 $= \frac{1}{n} E \| Z - EZ \|_2^2$ analog of $Var(Z) = EZ^{-}(EZ)^2$ (Dry)
 $= \frac{1}{n} E \| Z - EZ \|_2^2 = \frac{1}{n} (E \| Z \|^2 - \| EZ \|_2^2) \leq \frac{1}{n}$

•
$$\Rightarrow$$
 \Rightarrow realization of the r.v's $Z_{1,...,Z_n}$ sot.
 $\| x - \frac{1}{n} \sum_{i=1}^{n} Z_i \|_2^2 \leq \frac{1}{n}$ Since $Z_i \in T$, QED

Application: polytopes with few vertices have
exponentially small volume:
The [Carl-Ryjor 188] unit Euclidean fell
(21 P=B polytope with m vertices
Then
$$\frac{Val(P)}{Val(P)} = (3\sqrt{\frac{Eagn}{a}})^{\frac{1}{a}}$$

 2^{-4} if mecapled)
Per conv(T) where $T = tvertices of P} cB$
A.C.T \Rightarrow
 $\forall x \in P = conv(T)$ is within distance $\frac{1}{\sqrt{n}}$
from some point in the set
 $N := \{\frac{1}{n}\sum_{t=1}^{n} x_t : x_t \in T\}$
 $\Rightarrow \forall x \in P$ is covered by a ball of reduces $\frac{1}{\sqrt{n}}$
and center $\in N$. The number of such belts is
 $|N| \leq m^n$ (from the set T of m elements, x_t
 $|N| \leq m^n$ (from the set T of m elements, x_t
 $with repetition
 $\Rightarrow P can be covered by m^n copies of $\frac{1}{m}B$.
Comparing volumes $\Rightarrow vol(P) \leq m^n Val(\frac{1}{m}B) = m^n (\frac{1}{m})^d Val(B)$
 $\frac{Vd(P)}{Vd(B)} = \frac{m^n}{n^{4/2}} \leq (\frac{3}{2}(\frac{Bm}{a}))$.$$

-

- 84 -

Remarks

(1) A slightly more accurate count yields the bound $\left(C\sqrt{\frac{\log(m/d)}{d}}\right)$. 3 It is optimal, attained by a random polytope $P = conv \{ x_1, ..., x_m \}$ where $x_i = indep$ random pts on the unit sphere. [Datnis-Giannopoulos-Tsoloniitis' 2003, 2009] -see next page 3 "Hyperbolic intrition" for $5:= 3\sqrt{\frac{\log n}{d}}$, The says: tiny ball, hyperbolic intuition $Vol(P) \leq \delta^{a} Vol(B) = Vol(SB)$ Thus the picture "actually" looks like this, even though it violates convexity. ("core" V. Milman's "hyperbolic intuition" A "Blind spider" experiment: (4)the "core" JB, · A random walk will stay in will not find the "tentacles". · The spider can't tell the polytope from the ball SR-· Bad for algorithms (MCMC)

85