Next, remove the $4^{\text {th }}$ moment assumption:
Thy (Strong Law of Large Numbers) [Kolmogorov 1930] thus, we assume Let X_{1}, X_{2}, \ldots be ind riv's with finite mean $\mathbb{E} X_{i}=\mu$. $\mathbb{E}\left|X_{i}\right|<\infty$ Then $S_{n}:=x_{1}+\cdots+x_{n}$ satisfies

$$
\frac{S_{n}}{n} \xrightarrow{\text { ass. }} \mu
$$

Proof (1) (Truncation)
CLOG, $X_{k} \geq 0 \quad \forall k$ (If not, $X_{k}=X_{k}^{+}-X_{k}^{-}$and handle X_{k}^{+}, X_{k}^{-}separately)

$$
Y_{k}:=X_{k} 1_{\left\{X_{k} \leqslant k\right\}}, \quad T_{n}:=Y_{1}+\cdots+Y_{n} .
$$

(2) (Subsequence) We will first prove convergence for a (geometric) subsequence Fix $\alpha>1$, let $n_{k}:=\left\{\alpha^{k}\right\rceil, k=1,3 \ldots$
In preparation for Borel-Cantelli, let's bound

$$
\begin{aligned}
\sum_{k=1}^{\infty} & \mathbb{P}\left\{\left|\frac{T_{n_{k}}-\mathbb{E} T_{n_{k}}}{n_{k}}\right|>\varepsilon\right\} \leq \sum_{k=1}^{\infty} \frac{\operatorname{Var}\left(T_{n_{k}} / n_{k}\right)}{\varepsilon^{2}} \quad \text { (Chebysher) } \\
& =\sum_{k=1}^{\infty} \sum_{m=1}^{n_{k}} \frac{\operatorname{Var}\left(Y_{m}\right)}{\varepsilon^{2} n_{k}^{2}} \stackrel{\text { Fubini }- \text { Tonelli }}{=} \frac{1}{\varepsilon^{2}} \sum_{m=1}^{\infty} \operatorname{Var}\left(Y_{m}\right) \sum_{k: n_{k} \geq m} \frac{1}{n_{k}^{2}} \\
& \leq \frac{C(\alpha)}{\varepsilon^{2}} \sum_{m=1}^{\infty} \frac{\operatorname{Var}\left(Y_{m}\right)}{m^{2}} \leqslant ?
\end{aligned}
$$

(3) (Variance) $\operatorname{Var}\left(Y_{m}\right) \leq E Y_{m}^{2}=\int_{0}^{\infty} \mathbb{P}\left\{Y_{m}^{2}>y\right\} d y \quad$ (integrated tail)

$$
\begin{array}{cc}
\left.=2 \int_{0}^{\infty} x \mathbb{P}\left\{Y_{m}>x\right\} d x \quad \text { (change of var } y=x^{2}\right) \\
=2 \int_{0}^{m} x \mathbb{P}\left\{X_{m}>x\right\} d x \quad \text { (def of truncation) } \\
=2 \int_{0}^{m} x \mathbb{P}\left\{X_{1}>x\right\} d x \quad \text { (identical distribution) } \\
-92 \text { - }
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \sum_{m=1}^{\infty} \frac{\operatorname{Var}\left(Y_{m}\right)}{m^{2}}=\sum_{m=1}^{\infty} \int_{0}^{\infty} \frac{2}{m^{2}} \mathbb{1}_{\{x \leqslant m\}} x P\left\{X_{1}>x\right\} d x \\
& =2 \int_{0}^{\infty} \underbrace{\left(\sum_{m=1}^{\infty} \frac{\mathbb{1}\{x \leq m\}}{m^{2}}\right)}_{\|} x \mathbb{P}\left\{x_{1}>x\right\} d x \quad \text { (Fubini-Tonell } l_{i} \text {) } \\
& \sum_{m \geq x} \frac{1}{m^{2}} \asymp \int_{x}^{\infty} \frac{d m}{m^{2}} \asymp \frac{1}{x} \\
& =\int_{0}^{\infty} P\left\{X_{1}>x\right\} d x=\mathbb{E} X_{1}<\infty \\
& \text { (integrated tail) }
\end{aligned}
$$

(4) We have shown that

$$
\sum_{k=1}^{\infty} P\left\{\left|\frac{T_{n_{k}}-\mathbb{E} T_{n_{k}}}{n_{k}}\right|>\varepsilon\right\}<\infty \quad \forall \varepsilon>0
$$

Bocel-Cantelli \Rightarrow

$$
\mathbb{P}\left\{\left|\frac{T_{n_{k}}-\mathbb{E} T_{n_{k}}}{n_{k}}\right|>\varepsilon \text { i.0. }\right\}=0 \quad \forall \varepsilon>0
$$

Criterion of ass. convergence (Lem p. 89) \Rightarrow

$$
\begin{equation*}
\frac{T_{n_{k}}-\mathbb{E} T_{n_{k}}}{n_{k}} \rightarrow 0 \text { a.s. } \tag{*}
\end{equation*}
$$

(5) (Replacing E $\mathbb{E} T_{n_{k}}$ with μ)
$\Rightarrow \frac{\mathbb{E} T_{n}}{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbb{E} Y_{k} \rightarrow \mu$ as $\left.n \rightarrow \infty \quad \longrightarrow \quad \begin{array}{l}\text { Fact } \\ \begin{array}{c}\text { (convergence of } \\ \text { sequences in } R\end{array} \\ \text { sen }\end{array}\right)$ sequences in \mathbb{R})
$\Rightarrow \frac{\mathbb{E} T_{u_{k}}}{n_{k}} \rightarrow \mu$ as $k \rightarrow \infty$. If $x_{n} \rightarrow x$ then

$$
\frac{x_{1}+\cdots+x_{n}}{n} \rightarrow x
$$

Combining with (*) \Rightarrow

$$
\frac{T_{n_{k}}}{n_{k}} \rightarrow \mu \text { ass. }
$$

(6) (Interpolation) $\forall n \in \mathbb{N} \quad \exists k: \quad n_{k} \leq n \leq n_{k+1}$

$$
\begin{aligned}
& \Rightarrow \quad T_{n_{k}} \leq T_{n} \leq T_{n_{k+1}} \text { (monotone by def.) } \\
& \Rightarrow \frac{T_{n_{k}}}{n_{k+1}} \leq \frac{T_{n}}{n} \leq \frac{T_{n_{k+1}}}{n_{k}}
\end{aligned}
$$

\Rightarrow with probability 1,

$$
\frac{\mu}{\alpha} \leq \frac{\liminf T_{n}}{n} \leq \frac{\operatorname{limspp} T_{n}}{n} \leq \alpha \mu
$$

This holds $\forall \alpha>1 \Rightarrow$ with prob. 1, $\frac{T_{n}}{n} \rightarrow \mu$.
ie.

$$
\frac{T_{n}}{n} \xrightarrow{\text { as. }} \mu
$$

(7) (Replacing T_{n} by S_{n}):

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \mathbb{P}\left\{\left|X_{k}\right|>k\right\}=\sum_{k=1}^{\infty} \mathbb{P}\left\{\left|x_{1}\right|>k\right\} \quad \quad \text { (identical distr.) } \\
&= \sum_{k=1}^{\infty} \int_{k=1}^{k} \underbrace{\mathbb{P}\left\{\left|x_{1}\right|>k\right\}}_{\substack{k}} d t \leq \int_{0}^{\infty} \mathbb{P}\left\{\left|x_{1}\right|>t\right\} d t=\mathbb{E}\left|x_{1}\right|<\infty \\
& \text { CI } \quad \text { (or just apply integral test) }
\end{aligned}
$$

$$
\Rightarrow \mathbb{P}\left\{X_{k} \neq y_{k} \text { i. } 0 .\right\}=0
$$

\Rightarrow with prole 1, $\exists k_{0} \quad \forall k>k_{0}: X_{k}=Y_{k}$

$$
\begin{gathered}
\Rightarrow \quad\left|S_{n}-T_{n}\right| \leq \sum_{k=1}^{k_{0}}\left|x_{k}\right|=R \quad \forall n \\
\Rightarrow\left|\frac{S_{n}}{n}-\frac{T_{n}}{n}\right| \leq \frac{R}{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty \\
\vdots \\
\Rightarrow S_{n} / n \rightarrow \mu
\end{gathered}
$$

THM (SLLN for ∞ mean) (Kolmogorov 1933)
let x_{1}, x_{2}, \ldots be ind riv's, $S_{n}=x_{1}+\cdots+x_{n}$
If $E\left|X_{i}\right|=\infty$ then $\frac{S_{n}}{n}$ is unbounded (and thess diverges) a.s.
Proof (1) $\left|x_{n}\right|=\left|S_{n}-S_{n-1}\right| \leq\left|S_{n}\right|+\left|S_{n-1}\right|$

$$
\Rightarrow \limsup _{n} \frac{\left|x_{n}\right|}{n} \leq 2 \operatorname{liman}_{n} \frac{\left|S_{n}\right|}{n}
$$

Hence, it is enough to show that

$$
\limsup _{n} \frac{\left|x_{n}\right|}{n}=\infty \quad \text { a.s. }
$$

(2)

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \mathbb{P}\left\{\left|x_{n}\right|>n\right\}=\sum_{n=1}^{\infty} \mathbb{P}\left\{\left|x_{1}\right|>n\right\} \quad \text { (identical distribution) } \\
& \asymp \int_{0}^{\infty} \mathbb{P}\left\{\left|x_{1}\right|>t\right\} d t \quad \text { (integral test) } \\
&=\mathbb{E}\left|x_{1}\right|=\infty . \quad \text { (integrated toil) }
\end{aligned}
$$

(3) Let $M>0$, apply (2) for x_{u} / M (which have ∞ mean, too) \Rightarrow

$$
\sum_{n=1}^{\infty} \mathbb{P}\left\{\left|x_{n}\right|>M_{n}\right\}=\infty
$$

Borel-Cantelli II $\Rightarrow \mathbb{P}\left\{\left|\frac{X_{n}}{n}\right|>M\right.$ i.0. $\}=1$.

$$
\Rightarrow \mathbb{P}\left\{\lim _{n} x p\left|\frac{x_{n}}{n}\right|>M\right\}=1
$$

Take intersection over $\mu=1,2,3, \ldots \Rightarrow \mathbb{P}$

$$
\mathbb{P}\left\{\limsup \frac{\left|x_{n}\right|}{n}=\infty\right\}=1 .
$$

Ex If $X_{i} \sim$ Cauchy ind $\Rightarrow \frac{S_{n}}{n} \sim$ Cauchy.
UN tails. Does not contradict Them: a sequence of Cauchy riv's may be unbounded.

