APPLICATION 1: NORMAL NUMBERS
Def $A$ number $x \in R$ is called normal if, in its binary expansion, $\frac{\#\{1 \text { 's in the first } n \text { digits }\}}{n} \rightarrow \frac{1}{2}$ as $n \rightarrow \infty$

- May be generalized to base 10 (traction of $\forall$ digit $\rightarrow 1 / 10$ )

TUM [Borel 1909] Almost all numbers are normal $\leftarrow$ ie. The non-norned \#'s form a set of lebesgue meas $=0$
Proof WLOG for $[0,1]$
Let $X \sim$ Unif $[0,1]$. Binary expansion:

$$
x=0 . x_{1} x_{2} x_{3} \ldots
$$

Then $x_{i}$ are ind $\operatorname{Ber}(1 / 2)$ riv's [kw]

$$
\begin{aligned}
S L L N \Rightarrow & \frac{1}{n} \underbrace{\sum_{i=1}^{n} X_{i}}_{i=1} \longrightarrow \frac{1}{2} \text { ass. } \\
& \#\{1 \text { 's in the Riot } n \text { digits }\}
\end{aligned}
$$

OPEN QUESTIONS: is $\pi$ normal ?
ls $e$ normal?
Is $\sqrt{2}$ normal?
Not even known if all digits occur i.o. in those numbers.
CONJECTURE: $\forall$ irrational $\frac{\text { algebraic number is normal }}{\uparrow}$ root of a nonzero polynomial.

APPLICATION 2: SHANNON'S SOURCE CODING TKM

- Imagine a source ("channel") that produces a stream of random ind symbols from some alphabet $S=\left\{A B C D E_{1}, z\right\}$ symbol $A$ with prob. $P(A)$, symbol $B$ with prob $P(B)$, et.
Compress the source?
- wlog $S \subset \mathbb{R}$, let $X$ be a discrete riv. with imf

$$
P(x):=P\{X=x\}
$$

- Let $x_{1}, x_{2}, \ldots$ be lid copies of $x$ (source)
-The likelihood of $\forall$ given word $x_{1} x_{2} \ldots x_{n}$ (e.g. "LIAM") is

$$
p\left(x_{1}, \ldots, x_{n}\right):=\mathbb{P}\left\{\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)\right\}=p\left(x_{1}\right) \ldots p\left(x_{n}\right)
$$

Take $\log s$, divide by $n \Rightarrow$

$$
\begin{aligned}
&-\frac{1}{n} \log p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{n} \sum_{k=1}^{n}-\log p\left(x_{k}\right) \xrightarrow{\text { a.s. }} \mathbb{E}[-\log p(x)] \quad \text { (SLLN) } \\
&=-\sum_{x} p(x) \log p(x)=: H(x) \leftarrow \text { Def Entropy of } x \\
& \approx \neq \text { bits needed to encode } x \\
& \text { (next page) }
\end{aligned}
$$

$\Rightarrow p\left(x_{1}, \ldots, x_{n}\right) \approx 2^{-n H(x)} \quad$ "Asymptotic Equipartition Property" $=$ likelihood of $\forall$ output

Ex $(1) \quad X \operatorname{Ber}(p) \Rightarrow$

$$
H(x)=-\rho \log p-(1-p) \log (1-p)
$$



Zero if $p=0$ or $p=1$ (deterministic source)
Maximal( 1 ) \& $p=1 / 2$ (most random source) $\Rightarrow p\left(x_{1}, \ldots, x_{n}\right) \approx 2^{-n}$
(2) $X \sim U_{\text {if }}\{1, \ldots, N\} \Rightarrow H(X)=\log N \quad \leftarrow \log N$ bits needed to specify $a \#$ in $\{1, \ldots, N\}$
(3) $X=$ random letter from English alphabet $\Rightarrow H \approx 2.6$

- Shannon's The: "source can be compressed with rate $\approx \mu(x)$ bits/smbol such that almost no info is lost (i.e. The original symbols can be recovered with prob $\approx 1$ )
Moreover, the rate $K(x)$ is optimal":
Ex: $H \approx 2.6$ bits per English letter (as opposed to $\log _{2} 26 \approx 4.7$ f all letters were equally likely)

Thy (Shannon's Source Coding Thu)
Let $X$ be a r.v. that takes values in a countable set $S \subset \mathbb{R}$ let $x_{1}, x_{2}, \ldots$ be ind copies of $x$.
$\forall \varepsilon>0 \supseteq n_{0}>0 \quad \forall n>n_{0}$ : encoder decoder

1. ヨ pair of maps $S^{n} \xrightarrow{E_{E}}\{0,1\}^{n(H(x)+\varepsilon)_{D}^{\perp}} S^{n}$ such that

$$
P\left\{D\left(E\left(x_{1}, \ldots, x_{n}\right)\right)=\left(x_{1}, \ldots, x_{n}\right)\right\}>1-\varepsilon .
$$

$2 \forall$ pair of maps $S^{n} \xrightarrow{E}\{0,1\}^{n(k(x)-\varepsilon)} \xrightarrow{D} S^{n}$,

$$
P\left\{D\left(E\left(x_{v}, x_{n}\right)\right)=\left(x_{1}, \ldots, x_{n}\right)\right\}<\varepsilon .
$$

Proof (1) (Asymptotic Equipartition Property): By WLLN (p.97):

$$
\begin{aligned}
&-\frac{1}{n} \log p\left(x_{1}, \ldots, x_{n}\right) \xrightarrow{p} H(x) \\
& \Rightarrow \forall \varepsilon>0 \quad \exists n_{0} \quad \forall n>n_{0}: \\
& \mathbb{P}\left\{\left|-\frac{1}{n} \log p\left(x_{1}, \ldots, x_{n}\right)-H(x)\right| \leq \varepsilon\right\}>1-\varepsilon
\end{aligned}
$$

$\Rightarrow$ the "good" subset $A_{n} \subset S^{n}$ defined as

$$
\begin{equation*}
A_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): 2^{-n(n(x)+\varepsilon)} \leq p\left(x_{1},-x_{n}\right) \leq 2^{n(n(x)+\varepsilon)}\right\} \tag{*}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\mathbb{P}\left\{\left(x_{1}, \ldots, x_{n}\right) \in A_{n}\right\}>1-\varepsilon \tag{**}
\end{equation*}
$$

(2) (Existence of encoding-decoding) We have

$$
\begin{aligned}
& 1 \geqslant \mathbb{P}\left\{\left(x_{n}, \ldots, x_{n}\right) \in A\right\}=\sum_{\left(x_{1}, \ldots, x_{n}\right) \in A} \rho\left(x_{1}, \ldots, x_{n}\right) \geqslant|A| \cdot 2^{-n(k(x)+\varepsilon)} \\
& \text { lower 6d in ( } * \text { P. } 98 \text { ) } \\
& \Rightarrow|A| \leq 2^{n(n(x)+\varepsilon)} \\
& \Rightarrow \exists \text { injective map } E: A_{n} \rightarrow\{0,1\}^{n(n(x)+\varepsilon)}
\end{aligned}
$$

Let $D$ be the inverse of $E$ on its image.
Extend $E$ and $D$ arbitrarily $\Rightarrow$

$$
D\left(E\left(x_{1}, \ldots, x_{n}\right)\right)=\left(x_{1}, \ldots, x_{n}\right) \text { whenever }\left(x_{1}, \ldots, x_{n}\right) \in A_{n}
$$

By (** p.98),

$$
D\left(E\left(x_{1}, \ldots, x_{n}\right)\right)=\left(x_{1}, \ldots, x_{n}\right) \text { with mob }>1-\varepsilon \text {. }
$$

(3) Optimality) WLOG will prove the second part of thm for $2 \varepsilon$ instead of $\varepsilon$.
Consider $\forall$ pair of maps $S^{n} \xrightarrow{E}\{0,1\}^{n(k(x)-2 \varepsilon)} D \xrightarrow{n}$ and define the subset

$$
\begin{equation*}
B:=\left\{\left(x_{1}, \ldots x_{n}\right): D\left(E\left(x_{1}, \ldots, x_{n}\right)\right)=\left(x_{1}, \ldots, x_{n}\right)\right\} . \tag{*}
\end{equation*}
$$

By the factorization, $|B| \leq 2^{n(H(x)-2 \varepsilon)}$
Intersecting with the equipartition set $A$ from $(* p .98) \Rightarrow$

$$
\begin{aligned}
& \mathbb{P}\left\{\left(x_{1}, \ldots, x_{n}\right) \in B\right\} \leq \underbrace{\mathbb{P}\left\{\left(x_{1}, \ldots x_{n}\right) \in A \cap B\right\}}_{\mathbb{( x p \cdot 9 8 )}}+\underbrace{\mathbb{P}\left\{\left(x_{1}, \ldots, x_{n}\right) \in A^{<}\right\}}_{(*)} \\
& \sum_{\left(x_{1}, \ldots, x_{n}\right) \in A_{\cap} B} p\left(x_{1}, \ldots, x_{n}\right) \leq|B| \cdot 2^{n(n(x)+\varepsilon)} \leq 2^{-n \varepsilon} \\
& \leq 2^{-n \varepsilon}+\varepsilon \leq 2 \varepsilon \quad \text { for sutficienly large } n .
\end{aligned}
$$

