TUM (Etemadi's maximal inequality '1985)
Let $X_{1}, \ldots, X_{n}$ be independent riv's, $\quad S_{k}:=X_{1}+\cdots+X_{k}$
Then $\forall t>0$ :

$$
\left.\mathbb{P}\left\{\max _{1 \leq k \leq n}\left|S_{k}\right| \geq t\right\}_{3 r}^{\prime!}\right\} \leq 3 \max _{1 \leq k \leq n} \mathbb{P}\left\{\left|S_{k}\right| \geqslant \frac{t}{3}\right\}
$$

Trivial if $X_{i} \geqslant 0$; nontrivial otherwise.

Proof Breale down the event in LKS according to when $\left|S_{k}\right| \geqslant 3 r$ for the first time


$$
\begin{aligned}
& \qquad\left\{\max _{1 \leq k \leq n}\left|S_{k}\right| \geqslant 3 r\right\}=\bigsqcup_{m=1}^{n} \underbrace{\left\{\max _{1 \leq k<m}\left|S_{k}\right|<3 r \text { AND }\left|S_{m}\right| \geqslant 3 r\right\}^{m}}_{!_{1 \leq k<m}^{\prime!}} \\
& \text { Also, consider whether } F_{n}:=\left\{\left|S_{n}\right| \geqslant r\right\} \text { holds: } \quad E_{m}
\end{aligned}
$$

$$
\begin{gathered}
=F_{n} \cup \bigcup_{m=1}^{n}\left(E_{m} \cap F_{n}^{c}\right) \\
\Rightarrow \mathbb{P}\left\{\max _{1 \leqslant k \leq n}\left|S_{k}\right| \geq 3 r\right\} \leq \mathbb{P}\left(F_{n}\right)+\sum_{m=1}^{n} P(\underbrace{E_{m} \cap F_{n}^{c}})
\end{gathered}
$$

this event implies $\left|S_{m}-S_{n}\right| \geqslant\left|S_{m}\right|-\left|S_{n}\right| \geqslant 3 r-r \geqslant 2 r$

$$
\begin{aligned}
& \leq \mathbb{P}\left(F_{n}\right)+\sum_{m=1}^{n} \mathbb{P}(\underbrace{E_{m}}_{\sigma\left(x_{1}, \ldots, x_{m}\right)} \cap \underbrace{\left\{\left|S_{m}-S_{n}\right| \geqslant 2 r\right\}}_{\sigma\left(x_{m+1}, \ldots, x_{m}\right)}) \\
& =\mathbb{R}\left(F_{n}\right)+\sum_{\sum_{m=1}^{n}}^{\sum_{\text {independent }}^{n}} \mathbb{P}\left(E_{m}\right) \cdot \underbrace{P\left\{\left|S_{m}-S_{n}\right| \geqslant 2 r\right\}}_{\|} \\
& \leq \mathbb{P}\left(F_{n}\right)+\max _{1 \leq m \leq n} \mathbb{P}\{\underbrace{\left.\left|S_{m}-S_{n}\right| \geqslant 2 r\right\}}_{l}
\end{aligned}
$$

$\left\{S_{n} \geqslant r\right\} \quad$ this event implies $\left|S_{m}\right| \geqslant r$ or $\left|S_{n}\right| \geqslant r$

$$
\leq 3 \max _{1 \leq k \leq n} \mathbb{P}\left\{\left|S_{k}\right| \geqslant r\right\}
$$

Remark Integrated tail formula $\Rightarrow E \max _{1 \leq k \leq n}\left|S_{k}\right| \leq 9 \max _{1 \leqslant k \leq n} \mathbb{E}\left|S_{k}\right|$

- If $\mathbb{E} X_{i}=0$ and $\operatorname{Var}\left(X_{i}\right)<\infty$,

$$
\begin{array}{rlr}
\operatorname{RHS}(\text { Etemadi) } & \leq 3 \max _{1 \leq k \leq n} \frac{\operatorname{Var}\left(S_{k}\right)}{(t / 3)^{2}} & \\
& \leq 27 \operatorname{Var}\left(S_{n}\right) & \text { (Chebysher) } \\
& \text { (since } \operatorname{Var}\left(S_{k}\right)=\sum_{i=1}^{k} \operatorname{Var}\left(x_{i}\right) \text { increasesink) }
\end{array}
$$

$\Rightarrow$
THM KKolmogorov's maximal inequality]
let $X_{1}, \ldots, X_{n}$ be independent riv's with $\mathbb{E} X_{i}=0, \operatorname{Var}\left(X_{i}\right)<\infty \quad \forall i$ let $S_{k}:=x_{1}+\cdots+x_{k}$. Then $\forall t \geq 0$ :

$$
P\left\{\max _{1 \leq k \leq n}\left|S_{k}\right| \geqslant t\right\} \leq \frac{27}{t^{2}} \operatorname{Var}\left(S_{n}\right)
$$

Remark Constant 27 can be improved to 1 (which is obviously sharp) [Kolmogorov]

Example: Simple random walk $P\left\{X_{i}= \pm 1\right\}=\frac{1}{2}$ (Rademacher riv's)

$$
\begin{aligned}
& \operatorname{Var}\left(S_{n}\right)=\sum_{1}^{n} \operatorname{Vor}\left(x_{i}\right)=n \\
K M I & \Rightarrow P\left\{\max _{1 \leq k \leq n}\left|S_{k}\right| \geqslant t\right\} \leq \frac{n}{t^{2}} \leq 0.01 \quad \text { of } t \simeq \sqrt{n} \\
& \Rightarrow \max _{1 \leq k \leq n}\left|S_{k}\right| \simeq \sqrt{n} \text { whap } \quad o\left(s_{n}\right) \\
&
\end{aligned}
$$

Convergence of random series:

THM [Kolmogorov's two series the ]
Let $X_{1}, X_{2}, \ldots$ be independent mean zero riv's.
If $\sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n}\right)<\infty$ then $\sum_{n=1}^{\infty} x_{n}$ converges a.s.

Proof $S_{n}:=x_{1}+\cdots+x_{n}$. Enough to show that, with probability 1,
$S_{n}$ is Cauchy. $\Leftrightarrow \omega_{p}:=\sup _{m, n>p}\left|S_{m}-S_{n}\right| \rightarrow 0$ as $p+\infty$
Fix P,N and apply Kolmogorov's maximal inequality for $x_{\rho+1}, \ldots, x_{N} \Rightarrow$

$$
\begin{aligned}
& \Rightarrow \quad \mathbb{P}\{\underbrace{\max _{n \in(P, N\}}\left|x_{p+1}+\cdots+x_{n}\right|>\varepsilon}_{\text {increasing events in } N}\} \leq \frac{27}{\varepsilon^{2}} \underbrace{\sum_{k=p+1}^{N} \operatorname{Var}\left(x_{k}\right)}_{\text {converges as } N \rightarrow \infty} \\
& \mathbb{P}\left\{\sup _{n>p}\left|S_{n}-S_{p}\right|>\varepsilon\right\} \leq \text { taking limit, } \\
& \quad \frac{27}{\varepsilon^{2}} \underbrace{\sum_{k=p+1}^{\infty} \operatorname{Var}\left(x_{k}\right)}_{\vdots \text { as } n \rightarrow \infty} \quad \forall n .
\end{aligned}
$$

- By $\Delta$ inequality, $\omega_{p} \leq \sup _{m>p}\left|S_{m}-S_{p}\right|+\sup _{n>p}\left|S_{n}-S_{p}\right|$
$\Rightarrow$ if $w_{p}>2 \varepsilon$ then $\sup _{n>p}\left|S_{n}-S_{p}\right|>\varepsilon \quad \Rightarrow$

$$
P\left\{w_{p}>2 \varepsilon\right\} \leq \mathbb{P}\left\{\sup _{n>p}\left|S_{n}-S_{p}\right|>\varepsilon\right\} \rightarrow 0 \text { as } p \rightarrow \infty
$$

ie. $\quad w_{p} \rightarrow 0$ in pubatility.

- Since $w_{p}$ is monotonically decreasing in $p$,

$$
w_{p} \xrightarrow{\text { ass. }} 0 \quad\left(T_{m}(i v) p .89\right)
$$

Remarks. The converse is NOT true (NW)

- Kolmogorov's three series the gives necessary and sufficient conditions for ass. convergence of series.

Examples (Random sign series) Let $x_{n}= \pm 1$ with prob $y_{2}$ (Rademada) is d.
(a) $\sum_{n=1}^{\infty} \frac{x_{n}}{2^{n}}$ converges ass. limit $\sim$ Unif $[-1,1] \quad(k \omega)$
(b) Random harmonic series: $S=\sum_{n=1}^{\infty} \frac{x_{n}}{n}$ converges ass. Since

$$
\sum_{n=1}^{\infty} \operatorname{Var}\left(\frac{x_{n}}{n}\right)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{\sigma}
$$

$\Rightarrow \mathbb{E} S=0, \operatorname{Var}(S)=\frac{\pi^{2}}{6}$
$X$ has density,

$$
f(0)=\frac{1}{\pi} \int_{0}^{\infty} \prod_{k=1}^{\infty} \cos \left(\frac{x}{n}\right) d x
$$


(can be shown using characteristic functions)
"infinite cosine product integral"

$$
f(0) \simeq 0.124 \underbrace{99999999 \ldots . .9764}_{\sim 40 \text { digits }=9} \neq \frac{1}{4}!\quad \begin{gathered}
(\text { differs from } 1 / 4 \\
\left.<10^{-42}\right)
\end{gathered}
$$

