TOWARD THE CENTRAL LIMIT THEOREM ("CLT")

En A simple roundon welk:

$$\int_{n=2}^{\infty} A simple roundon welk:$$

$$\int_{n=2}^{\infty} \frac{x_{1}+\cdots+x_{n}}{x_{n}} where x_{1} \sim Rademeeters independent.$$
Approximate the proof $P_{1}S_{n}=x_{2}^{2}=i(x_{1},n)$?

$$\cdot f(x_{1}n+1)=P_{1}S_{n+1}=x_{2}^{2}=P_{1}S_{n}=x+1, x_{n}=-1\}+P_{1}S_{n}=x-1, x_{n}=1\}$$

$$= P_{1}S_{n}=x+1\}\cdot P_{1}X_{n}=-1]+P_{1}S_{n}-x-1\}\cdot P_{1}X_{n}=1\} (independence)$$

$$= f(x+1,n)\cdot \frac{1}{2} + f(x-1,n)\cdot \frac{1}{2}$$

$$\cdot Subtract f(x_{n}n) from boke sides, rearrange the terms =>$$

$$f(x_{n}n+1)-f(x_{n}n) = \frac{f(x+1,n)-f(x_{n}n)}{2} - \frac{f(x_{n}n)-f(x_{n}n)}{2} + \frac{2}{2} \frac{\partial f}{\partial x}(x_{n}n)$$

$$= \frac{\partial f}{\partial n} = \frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}} \qquad \text{Heat (a.k.a. diffusion) PDE}$$

$$= \int (x_{1}n) = \frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}} \qquad \text{Heat (a.k.a. diffusion) PDE}$$

$$= \int (x_{1}n) = \frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}} \qquad \text{Heat (a.k.a. diffusion) PDE}$$

$$= \int (x_{1}n) = \frac{1}{\sqrt{2\pi n}} \exp(-\frac{x^{2}}{2n}) = pdf(x) d = N(0, \sqrt{n})$$

$$\Rightarrow \int x_{n} \approx N(0, \sqrt{n}) \leftarrow CLT$$

$$= Remark OA random welk models a diffusion (af 1 molecule)$$

$$(2) A rigonous proof of (*): express f(x_{1}n) in terms of bioomial coefficients; use Taylor's approximation $x \Rightarrow De Noivre-Laplace Tum^{v}$

$$(2) This acgument is Cunited to binomial distre: For gound X_{n}, what version of (m) do we expect 1 use for a for a space for a for a space for a spa$$$$

WEAK CONVERGENCE

Def A sequence of r.v.s
$$X_{1}, X_{2},...$$
 converges weakly (a.k.a. "in distribution."
to a r.v. X if
Denoted $X_{n} \stackrel{\text{distribution."}}{\to} F_{n}(x) \rightarrow F(x)$ \forall point of continuity x of F
cd(s: $P|X_{n} \leq x$) $P|X \leq x$?.
Remark F is bounded and monotone \Rightarrow has at most countable.
 $\#$ of discontinuities.
Examples
(a) let X be \forall r.v. Then $X_{n} = X + \frac{1}{n} \stackrel{\text{dist}}{\to} X$
 $F_{n}(x) = P|X + \frac{1}{n} \leq x$? $-P|X \leq x - \frac{1}{n}$? $=F(x - \frac{1}{n}) \rightarrow F(x)$
if F is continuous at x .
This example shows why we require convergence
only at points of continuity of F .
(6) Consider a coin that comes up K with prob P
 $X := \#$ coin flips until the first H. (=waiting time for 1st succed)
 $^{n}Cecon(p)$ Geometric distribution
 $P\{X_{p} > k\} = P|TT...T? = (1-p)^{k}$, $k=1,2,...$
Substitute $k = x/p \Rightarrow$
 $P\{pX_{p} > x\} = (1-x)^{n/p} \rightarrow e^{-x}$ as $p=0$
Hence, we proved : $Z \sim Exp$ if $P|Z > x] = e^{2}$
 $Alimit Him for geometric distribution
 $P\{X_{p} \sim Geom(p)$ Keen $PX_{p} \stackrel{\text{dist}}{\rightarrow} Z$ where $Z \sim Exp$.$

Relation of weak convergence to oker modes of convergence?
Proof
$$X_n \xrightarrow{P} X \implies X_n \xrightarrow{H} X$$

Proof \forall point of continuity $x \neq F$:
 $F_n(x) = P!X_n \leq x! \stackrel{P}{\leq} P!I(x_n \cdot x) \geq ! + P! \times \leq x + \epsilon!$
 $\downarrow (anounption) \xrightarrow{F}(x + \epsilon)$
 $\Rightarrow limsus F_n(x) \leq F(x + \epsilon) \longrightarrow F(x)$ as $\epsilon \mid o \ (and number)$
 $\Rightarrow limsus F_n(x) \leq F(x)$. Similarly, liminf $F_n(x) \geq F(x)$ (DN) \square
Remark The converse is felse: X_n can be an different prob. spaces.
 $\vdash Excample : lef X_i X_{i_1} X_{i_2} \dots$ de iid $\Gamma_i V_i$. Then
 $X_n \stackrel{diff}{\longrightarrow} X \Rightarrow X_n \stackrel{diff}{\longrightarrow} X_n \forall X_n \ (uly?)$
Koncere :
The (Almost sure representation) [Skorokhad]
If $Y_n \stackrel{diff}{\longrightarrow} Y$ then $\exists r_i V_i^* X_i X_{i_1} X_{i_2} \dots$ all on the same prob-space
and such that $X \stackrel{diff}{\longrightarrow} Y_i X_n \stackrel{diff}{\longrightarrow} Y_n \ \forall n_i$ and
 $X_n \rightarrow X$ eucryclave ($\Rightarrow a.s.$)
Proof The construction is the same as in the proof that
 $\forall r.v. can be realized an $\Sigma = [o_{i_1}] (F = B, P = (abssue) (pri)$
(d $F_i F_i, F_i, \dots$ le cdft's of $Y_i Y_i Y_{i_3} \dots$
() Assuming that F_i for an econtinuous and strictly increasing:
 $X(x) = F'(x), \quad X_n(x) := F'_n(x), \quad z \in [o_{i_1}]$
Then cdf of X is F_i cdf of X_i is F_n
(indeed, $P! X \leq a \} = \mu \{x \in la_{i_1} : F_{i_2} : = A \} = F(a^{-})$)
 $Y_n \stackrel{H}{\rightarrow} Y \Rightarrow F_n \longrightarrow F$ pointwee. Assumption $\Rightarrow F_i F_i^{-1}$ are continuous,
 $\Rightarrow F_n^{-1} + F$ pointwise $X_n \to X$ everywhere $B$$

(2) General case:

$$\chi(x) = F'(x) := sup \{y; F(y) < x\} \xrightarrow{1} F'_{x,n}(x) := F'_{n}(x) := sup \{y; F_{n}(y) < x\} \xrightarrow{1} F'_{x,n}(x) := F'_{n}(x) := sup \{y; F_{n}(y) < x\} \xrightarrow{1} F'_{x,n}(x) := F'_{n}(x) := sup \{y; F(y) < x\}, f_{x,n}(x) := f'_{x,n}(x) := f_{x,n}(x) := f_{x,n}($$

Remark It is NOT true that joint distr. is the same, i.e. that

$$(X, X_1, X_2, ...) \stackrel{dist}{\longrightarrow} (Y, Y_1, Y_2, ...)$$
le.g. if $Y, Y_1, Y_2, ...$ are i.i.d. (indeed, $Y_n \stackrel{w}{\rightarrow} Y$ trivially but $X_n \stackrel{a.s}{\rightarrow}$ anywhere)

Summary of convergence of rivis: in prob ۵.5 .S. F. Subsequence