TOWARD THE CENTRAL LIMIT THEOREM ("GLT")

Ex A simple random walk:

$S_{n}=X_{1}+\cdots+X_{n}$ where $X_{i} \sim$ Rademacher, independent.
Approximate the puff $P\left\{S_{n}=x\right\}=: f(x, n)$?

$$
\begin{aligned}
\cdot f(x, n+1)=\mathbb{P}\left\{S_{n+1}=x\right\} & =\mathbb{P}\left\{S_{n}=x+1, X_{n}=-1\right\}+\mathbb{P}\left\{S_{n}=x-1, X_{n}=1\right\} \\
& =\mathbb{P}\left\{S_{n}=x+1\right\} \cdot \mathbb{P}\left\{X_{n}=-1\right\}+\mathbb{P}\left\{S_{n}=x-13 \cdot \mathbb{P}\left\{X_{n}=1\right\}\right. \text { (independence) } \\
& =f(x+1, n) \cdot \frac{1}{2}+f(x-1, n) \cdot \frac{1}{2}
\end{aligned}
$$

- Subtract $f(x, n)$ from both sides, rearrange the terms \Rightarrow

$$
\begin{aligned}
f(x, n+1)-f(x, n)= & \frac{f(x+1, n)-f(x, n)}{2}-\frac{f(x, n)-f(x-1, n)}{2} \\
\text { \$ Heuristically } & \frac{1}{2} \frac{\partial^{\prime} f}{\partial x}(x, n)-\frac{1}{2} \frac{\partial f}{\partial x}(x-1, n) \approx \frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}(x, n)
\end{aligned}
$$

$$
\Rightarrow \quad \frac{\partial f}{\partial n}=\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}
$$

Heat (a.k.a .diffusion) PDE with initial condition $f(x, 0)=\delta(x)$

- Solve: the (fundamental) solution is
(*) $f(x, n) \approx \frac{1}{\sqrt{2 \pi n}} \exp \left(-\frac{x^{2}}{2 n}\right)=\operatorname{pdf}(x)$ of $N(0, \sqrt{n})$

$$
\Rightarrow \quad S_{n} \approx N(0, \sqrt{n}) \leftarrow C \angle T
$$

- Remarks (1) A random walk models a diffusion of 1 molecule)
(2) A rigorous proof of ($*$): express $f(x, n)$ in terms of binomial coefficients; use Taylor's approximation
\Rightarrow "De Moivre-Laplace Thu"
() This argument is limited to binomial distr."

For general X_{n}, what version of $(*)$ do we expect? what does it even mean shat $S_{n} \rightarrow N(0,1)$? Not \xrightarrow{p} or a.s. $-109-$

WEAK CONVERGENCE
Def A sequence of riv's X_{1}, X_{2}, \ldots converges weakly (a.k.a. "in distribution") to a r.v.X if

$$
\begin{array}{ccc}
& F_{n}(x) \rightarrow F(x) \quad \forall \text { point of continuity } x \text { of } F \\
\text { Denoted } X_{n} \xrightarrow{\omega} X \quad \| & \| \\
\text { cdf's: } & \mathbb{P}\left\{X_{n} \leq x\right\} \quad P\{X \leq x\} .
\end{array}
$$

Remark F is bounded and monotone \Rightarrow has at most countable \# of discontinuities.

Examples
(a) Let x be \forall r.v. Then $x_{n}:=x+\frac{1}{n} \xrightarrow{\omega} x$

$$
F_{n}(x)=P\left\{X+\frac{1}{n} \leqslant x\right\}=P\left\{X \leqslant x-\frac{1}{n}\right\}=F\left(x-\frac{1}{n}\right) \rightarrow F(x)
$$

if F is continuous at x.
This example shows why we require convergence only at points of continuity of F.
(6) Consider a coin that comes up $t e$ with prob. P .
$X_{p}:=\#$ coin flips until the first H. (=waiting time for $1^{\text {st }}$ success)
$\sim \operatorname{Geom}(P) \quad G e o m e t r i c ~ d i s t r i b u t i o n ~$

$$
\mathbb{P}\left\{x_{p}>k\right\}=\mathbb{P}\{\underbrace{T T \ldots T}_{k}\}=(1-p)^{k}, \quad k=1,2, \ldots
$$

Substitute $k=x / p \Rightarrow$

$$
\mathbb{P}\left\{p X_{p}>x\right\}=(1-x)^{x / p} \rightarrow e^{-x} \text { as } p \rightarrow 0 \text {. }
$$

Hence, we proved.
a Exponential distribution: $Z \sim$ Exp if $P\{Z>x\}=e^{-x}$
Alimit then for geometric distribution
If $X_{p} \sim \operatorname{Geome}(p)$ them $p X_{p} \xrightarrow{\omega} Z$ where $Z \sim E_{x p}$. as $p \rightarrow 0$

Relation of weak convergence to other modes of convergence?
Prop $X_{n} \xrightarrow{p} X \Rightarrow X_{n} \xrightarrow{\omega} X$

Proof \forall point of continuity x of F :

$$
\begin{aligned}
& F_{n}(x)=\mathbb{P}\left\{X_{n} \leq x\right\} \stackrel{\Delta}{\subseteq} \underbrace{\mathbb{P}\left\{\left|X_{n}-x\right|>\varepsilon\right\}}_{\downarrow \text { (assumption) }}+\underbrace{\mathbb{P}\{X \leq x+\varepsilon\}}_{F^{\prime \prime}(x+\varepsilon)} \\
& \Rightarrow \operatorname{limsus}_{\lim _{n}}(x) \leq F(x+\varepsilon) \xrightarrow{\longrightarrow} F(x) \text { as } \varepsilon \downarrow 0 \text { (continuity) } \\
& \Rightarrow \limsup _{n} F_{n}(x) \leq F(x) . \quad \text { Similarly, } \liminf _{n} F_{n}(x) \geq F(x) \text { (DrY) }
\end{aligned}
$$

Remark The converse is false: x_{n} can be on different prob. spaces.
Example: let x, x_{1}, x_{2}, \ldots be id riv's. Then

$$
x_{n} \stackrel{\text { distr }}{=} x \Rightarrow X_{n} \xrightarrow{w} x \text { trivially, lout } x_{n} \xrightarrow{p} x \text { (why?) }
$$

However:
TKM (Almost sure representation) [Skorokhod]
If $Y_{n} \xrightarrow{W} Y$ then \exists riv's $X, X_{1}, X_{2} \ldots$ all on the same prob-space and such that $X \stackrel{\text { dist }}{=} Y, X_{n} \stackrel{\text { dist }}{=} Y_{n} \forall n$, and

$$
X_{n} \rightarrow X \text { everywhere }(\Rightarrow \text { a.s.) }
$$

Proof The construction is the same as in the proof that \forall riv. can be realized on $\Omega=[0,1](F=B, P=$ lebesgue $)(P, 17)$ let F, F_{1}, F_{2}, \ldots be cf's of $Y_{1} Y_{1}, Y_{2}, \ldots$
(1) Assuming that F, F_{n} are continuous and strictly increasing:

$$
X(x):=F^{-1}(x), \quad X_{n}(x):=F_{n}^{-1}(x), \quad x \in[0,1]
$$

Then cdf of X is F, cal of x_{n} is F_{n}

$$
\text { (indeed, } \mathbb{P}\{X \leq a\}=\mu\{x \in[0,1]: \underbrace{\left.F^{-1}(x) \leq a\right\}}_{x \leq F(a)}=F(a))
$$

$Y_{n} \xrightarrow{\omega} Y \Rightarrow F_{n} \rightarrow F$ pointuse. Assumption $\Rightarrow F^{-1}, F_{n}^{\prime}$ are continuous, $\Rightarrow F_{n}^{-1} \rightarrow F^{-1}$ pointuix $\Rightarrow x_{n} \rightarrow x$ everywhere. strictly increasing "(check!) HW.
(2) General case:

$$
\begin{aligned}
& X(x):=F^{-1}(x):=\sup \{y: F(y)<x\} \\
& X_{n}(x):=F_{n}^{-1}(x):=\sup \left\{y: F_{n}(y)<x\right\}
\end{aligned}
$$

Decompose $\Omega=[0,1]=\Omega_{\theta}+\Omega_{2}$

where $a_{x}:=\sup \{y: F(y)<x\}, b_{x}:=\inf \{y: F(y)>x\}$,

$$
\Omega_{\Theta}=\left\{x: a_{x}=b_{x}\right\}
$$

- Ω_{θ} is countable since the intervals $\left(a_{x}, b_{x}\right)$ are disjoint $\left(\begin{array}{c}\text { \&each }\left(a_{x} b_{x}\right) \\ \text { contains a different } \\ \text { rational \# }\end{array}\right)$
- F is strictly increasing on Ω_{0}, ie. $\forall x \in \Omega_{0}$:
(*) $y>F^{-1}(x) \Rightarrow F(y)>x$ and $y<F^{-1}(x) \Rightarrow F(y)<x$
(indeed: $\quad a_{x}=b_{x}$ IV def of x
- limsup $F_{n}^{-1}(x) \leq F^{-1}(x) \quad \forall x \in \Omega_{\odot}$

Whose $\forall y>F^{-1}(x)$. (*) $\Rightarrow F(y)>x$.
If y is a point of continuity of F, then by cessumption of Km,

$$
\begin{aligned}
& F_{n}(y) \longrightarrow F(y) \longrightarrow \quad F_{n}(y)>x \text { for } \forall \text { suff. large } n \\
\Rightarrow & \left.F_{n}^{-1}(y) \leq y \quad \text { (by def. of } F_{n}^{-1}\right)
\end{aligned}
$$

Summarizing:
$\limsup _{n} F_{n}^{-1}(x) \leq y \quad \forall y>\vec{F}(x)$ that is a pt of continuity of F. Since the points of continuity are everguthere dense (价 of discontinuity $\left.\begin{array}{c}\text { are countable }\end{array}\right)$ \Rightarrow ged.

- Similarly, liming $F_{n}^{-1}(x) \geqslant F^{-1}(x) \quad \forall x \in \Omega_{0} \quad$ (Dry)

$$
\Rightarrow F_{n}^{-1}(x) \rightarrow F^{-1}(x) \quad \forall x \in \Omega_{0}
$$

- Recall Ω_{Θ} is countable \Rightarrow null.

Redefine $X_{n}(x)=X(x):=0$ for $x \in \Omega_{\odot}$

$$
\Rightarrow F_{n}^{-1}(x) \rightarrow F^{-1}(x) \quad \forall x \in \mathbb{R} .
$$

Remark It is Not true that joint distr. is the same, i.e. That

$$
\begin{aligned}
& \left(X_{1}, X_{1}, X_{2}, \ldots\right) \stackrel{\text { dist }}{ }\left(Y_{1} Y_{1}, Y_{2}, \ldots\right) \\
& \text { e.g. if } \left.Y_{1}, Y_{1}, Y_{2}, \ldots \text { are i.i.d. (indeed, } Y_{n} \xrightarrow{\omega} Y \text { trivially but } X_{n} \xrightarrow{\text { a.s }} \text { anywhere }\right)
\end{aligned}
$$

Summary of convergence of riv's:

