Recall Xn = X => P{Xn = x} - P{X=x} EQUIVALENT PROPERTIES : ubenever P[X=x]=0. Lem (Portmanteau lemma) TFAE: (i) $X_{\mu} \xrightarrow{\omega} X$ (ii) $P\{X_n \in [a, b]\} \longrightarrow P\{X \in [a, b]\}$ whenever $P\{X=a\} = P\{X=b\} = 0$ (iii) P{Xn∈B} → P{X∈B} ∀ continuity set BCR of X (iv) $Eh(X_n) \rightarrow Eh(X) \forall$ bounded, continuous $h: \mathbb{R} \rightarrow \mathbb{R}$ (v) $\mathbb{E}h(X_n) \to \mathbb{E}h(X)$ whenever h and all its derivatives h, h', h'', \dots are bounded \notin compactly supported. i.e. I set B such that P{XEDB}=0 Proof where OB = B \ B' is the boundary of B (i)=)(iii) By Shorokhod's representation than (P.111), we can assume wood that $X_n \xrightarrow{a.s} X \Rightarrow X_n \xrightarrow{r} X$. Fix $\forall \epsilon > 0$ $P_{2}^{1} \times_{n} \in B^{1} \leq P_{2}^{1} \times_{n} \in B^{1} \times_{n} - \times | < \varepsilon^{1} + P_{2}^{1} | \times_{n} - \times | \geq \varepsilon^{1}$ XEB:= {yER: = zEB s.t. |x-y|< 23 (E-neighborhand) $\Rightarrow \lim_{n} \sup P\{X_n \in B\} \leq P\{X \in B_{\varepsilon}\},$ (continuity of probability) · let ELO => BE + B => P{XEB} $\Rightarrow \lim_{n \to \infty} P\{X_n \in B\} \leq P\{X \in \overline{B}\} = P\{X \in B^n\} \leq P\{X \in B\}.$ BUDB (Bis a continuity set) · Apply this asgument for B instead of B, which must also be a continuity set (2(B)= OB) => lim sup Pixn (B) = PixeB) ⇒ limity P{Xn (B} ≥ P{X (B). Combine upper \$ lower ods => $P\{x_n \in B_3 \longrightarrow P\{x \in B_3\}$. (iii) ⇒ (ii) is trivial. (ii) ⇒ (i) Since P{IXI>M} → O as M + 00 (continuity of measure), VERO 3 M s.t. P{IXI>M} < E and P{|X|=M}=0 $\Rightarrow P\{X_n \leq x\} = P\{X_n \leq x, |X_n| \leq M\} + P\{|X_n| > M\}$ Closed interval complement of a closed interval -113 -

$$\Rightarrow P\{x \le x, |x| \le M\} + P\{|x| > M\} \text{ whenever } P\{x = x\} = 0 \text{ (assum } \\ \leq P\{x \le x\} + \varepsilon. \\ \Rightarrow linequer P\{x_n \in x\} = P\{x \le x\} + \varepsilon. \\ A reverse ineq. follows by the same argument with $x_n \leftrightarrow x$. \Box
(1) \Rightarrow (i) By Shorokhod's a.s. representation than (p.111), we can assume bulloo that $x_n \rightarrow x$ everywhere.
Boundedness of $h \Rightarrow h(x_n) \rightarrow h(x)$ everywhere.
Boundedness of $h \Rightarrow h(x_n) \rightarrow h(x)$ everywhere.
Boundedness of $h \Rightarrow h(x_n) \rightarrow h(x)$. \Box
(iv) \Rightarrow (v) is trivial.
(v) \Rightarrow (ii) Smoothing: Fix any accle satisfying $P\{x=a\} = P\{x=b\} = 0$ (s)
Fix $\varepsilon > 0$. \exists function h as in the conclusion satisfying $I_{x=a} = P\{x=b\} = 0$ (s)
Fix $\varepsilon > 0$. \exists function h as in the conclusion satisfying $I_{x=a} = P\{x=b\} = 0$ (s)
 $P\{x_n \in [a, b]\} \ge Ek(x_n) \rightarrow Ek(x)$ $\Rightarrow Ek(x) (assumption) \rightarrow Ek(x) (assumption) \rightarrow P\{x \in [a+\varepsilon, b-\varepsilon]\}$
 $\Rightarrow linninf P\{x_n \in [a, b]\} > P\{x \in [a+\varepsilon, b-\varepsilon]\} \forall \varepsilon > 0$
Take $\varepsilon + 0 \Rightarrow$ by continuity of measure, $R + S \rightarrow P \{x \in [a, 6]\} = P[x \in [a, 6]]$.
 $\Rightarrow linninf P\{x_n \in [a, b]\} \ge P\{x \in [a, c]\} \ge P[x \in [a, c]]$. $\Box$$$

A:
$$\forall$$
 seq. of r.v's (X, u) has a weakly convergent subsequence?
Ans: yes, almost.
The (Helly's selection the) let (F.) be a sequence of nondecreasing,
uniformly bounded functions $R + R$. Then \exists subsequence (Fn.)
and a nonincreasing, right-continuous function F such that
 $\lim_{k} F_{n_k}(x) = F(x)$ \forall point of continuity x of F.
i.e. $\sup_{k} P \parallel F_n \parallel_{\infty} < \infty$
Proof () (diagonal argument)
 \forall fixed x , Bolsono-Weierstrass $\exists \exists n_k = n_k(x)$:
 $(F_n(x))$ converges.
Diagond argument $\Rightarrow \exists (n_k):$
 $(n_k^c) = (n_k^c)$, Find (n_k^c) giving convergence at $q_1 = q_1$.
($n_k^c) = (n_k^c)$, $p_i ing convergence on q_2 , etc. Set $(n_k):=(n_k^{(n_k)})$.
 $\exists t = G(q):=\lim_{k} F_{n_k}(q) = \forall q \in \mathbb{R},$
 $F(x):= \inf \{G(q): q \ge x, q \in \mathbb{Q}\}$ $\forall x \in \mathbb{R}$.
F is nonincreasing (ky def).
 $\bigotimes (Sunductions katuren 2 rationals)$$

$$(3) F is right-continuous? $\forall y \in (z,q):$

$$F(z) < F(y) \quad (monotonicity)$$

$$\leq G(q) \quad (def of F)$$

$$< F(z) + \varepsilon \quad (B_{z}^{z}) \implies |F(z) - F(y)| < \varepsilon \qquad \square$$

$$-115 -$$$$

$$F_{n_{k}}(x) \leq F_{n_{k}}(q) \quad (\text{monotonicity}) \\ \rightarrow G(q) \quad (def of G) \\ \leq F(x) + \varepsilon \quad (b_{y} *) \quad \Rightarrow \underset{k}{\text{limsup}} F_{n_{k}}(x) \leq F(x) + \varepsilon \\ \notin F_{n_{k}}(x) \geq F_{n_{k}}(p) \quad (\text{monotonicity}) \\ \rightarrow G(p) \quad (def of G) \\ \geq F(p) \quad (def of F) \\ \geq F(x) - \varepsilon \quad (b_{y} * *) \quad \Rightarrow \underset{k}{\text{lim}} \inf F_{n_{k}}(x) \geq F(x) - \varepsilon \quad \varepsilon \neq 0 \Rightarrow \text{QED}.$$

Q. Apply Helly S.T for CDF's
$$F_n$$
,
i.e. nondecreasing, right-continuous Runctions satisfying $F_n(-\infty)=0$, $F(too)=1$.
Will the limit F be a CDF?
Ans: Not necessarily: $F(-\infty)=0$, $F(+\infty)=1$ may fail
Example: 1 F_n $F_n \to 0$ pointwise, but 0 is NOT a CDF.
"MASS ESCAPES TO ∞ "

Q: Now can we prevent the escape?
Def (Tightness) A sequence of r.v's (X_n) is tight
if
$$\forall E>O \exists M>O$$
:
 $P\{|X_n|>M\} \in E \forall n$.
Examples $X_n = n$ is not tight (see above)
 $X_n \sim Unif[n,n+1]$ is not tight (check! Nw)
 $X_n \sim N(O,n)$ is not tight (check! Nw)
 $Yr.vs$ with mean O, Verraine 1 are tight (chebyster)
Observation: If (F_n) in Helly's ST are CDF of tight (X_n)
Haw F(-od) = O, F(+od) = 1
Proof $\forall E>O \exists M>O$ (from def. of tightness)
 $\forall x \leq -M$: $F(x) \leq F(-M)$ (monotonicity)
 $= \lim_{k} F_n(M)$ (Helly)
 $= \lim_{k} P\{X_{n_k} \leq -M\} \leq E \Rightarrow F(-d) = 0$. D
(Problemov's known)
Coe (Compactness") \forall tight sequence of r.v's (X_n)
 \exists subsequence (n_k) and a r.v. X such that
 $X_{n_k} \stackrel{W}{\longrightarrow} X$.

-117-

6