EQUIVALENT PROPERTIES: Recall $x_{n} \stackrel{\omega}{\leftrightarrows} x \stackrel{\text { def }}{\Leftrightarrow} \mathbb{P}\left\{X_{n} \leq x\right\} \rightarrow P\{x \leq x\}$
whenever $\mathbb{P}\{X=x\}=0$
lem (Portmanteau lemma) TFAE:
(i) $X_{n} \xrightarrow{\omega} X$
(ii) $\mathbb{P}\left\{X_{n} \in[a, b)\right\} \rightarrow \mathbb{P}\{X \in[a, b]\}$ whenever $\mathbb{P}\{X=a\}=\mathbb{P}\{X=b\}=0$
(iii) $\mathbb{P}\left\{x_{n} \in B\right\} \rightarrow \mathbb{P}\{x \in B\} \quad \forall$ continuity set $B \subset \mathbb{R}$ of X
(iv) $\mathbb{E} h\left(X_{n}\right) \rightarrow \mathbb{E} h(x) \quad \forall$ bounded, continuous $h: \mathbb{R} \rightarrow \mathbb{R}$
(v) $E h\left(X_{n}\right) \rightarrow E h(X) \quad \begin{aligned} & \text { whenever } h \text { and all its derivatives } \\ & \text { are bounded } \$ a^{\prime}, h^{\prime \prime}, \ldots \\ & \text { compacter supported }\end{aligned}$ are bounded \ddagger compacter, supported.

Proof ie. \forall set B such that $P\{X \in \supset B\}=0$ where $\partial B=\bar{B} \backslash B^{\circ}$ is the boundary of B
(i) \Rightarrow (iii) By Shorokhod's representation the ($P .111$), we con assume whoa

$$
\begin{aligned}
& \text { that } X_{n} \xrightarrow{\text { ass }} x \Rightarrow X_{n} \xrightarrow{P} X \text {. Fix } \forall \varepsilon>0 \\
& \mathbb{P}\left\{X_{n} \in B\right\} \leq \mathbb{P}\{\underbrace{X_{n} \in B \notin\left|x_{n}-x\right|<\varepsilon}_{\downarrow \Delta}\}+\underbrace{P\left\{\left|x_{n}-x\right| \geqslant \varepsilon\right\}}_{\vdots}
\end{aligned}
$$

$$
X \in B_{\varepsilon}:=\{y \in R: \exists x \in B \text { st. }|x-y|<\varepsilon\} \quad \text { (} \varepsilon \text {-neighborhood) }
$$

$\Rightarrow \limsup _{n} \mathbb{P}\left\{x_{n} \in B\right\} \leq \mathbb{P}\left\{x \in B_{\varepsilon}\right\}$.

- Let $\varepsilon \downarrow 0 \Rightarrow B_{\varepsilon} \downarrow \bar{B} \Rightarrow \mathbb{P}\left\{x \in \frac{\downarrow(\text { continuity }}{B}\right\}$ of poobcoility $)$

$$
\Rightarrow \operatorname{linsup}_{n} P\left\{X_{n} \in B\right\} \leq \mathbb{P}\{X \in \bar{B}\}=\mathbb{P}\left\{X \in B^{0}\right\} \leq \mathbb{P}\{X \in B\} \text {. }
$$

$B^{\circ} \cup \partial B{ }^{\prime \prime}$ (Bis a continuity set)

- Apply this argument for B^{-}instead of B, which must also be a continuity set $\left(D\left(B^{c}\right)=O B\right) \Rightarrow \limsup _{n} \mathbb{P}\left\{X_{n} \in B^{c}\right\} \leq \mathbb{P}\left\{X \in B^{c}\right\}$ $\Rightarrow \liminf \mathbb{P}\left\{X_{n} \in B\right\} \geq \mathbb{P}\{X \in B\}$. Combine upper $\$$ lower ods \Rightarrow $P\left\{X_{n} \in B\right\} \longrightarrow P\{x \in B\}$.
(iii) \Rightarrow (ii) is trivial.
(ii) \Rightarrow (i) Since $\mathbb{P}\{|x|>\mu\} \rightarrow 0$ as $\mu \rightarrow \infty$ (continuity of measwe), $\forall \varepsilon>0 \exists M$ st. $\mathbb{P}\{|x|>M\}<\varepsilon$ and $\mathbb{P}\{|x|=M\}=0$

$$
\Rightarrow \mathbb{P}\left\{X_{n} \leq x\right\}=\mathbb{P}\{\underbrace{\left.X_{n} \leq x,\left|X_{n}\right| \leq M\right\}}_{\text {Closed interval }}+\mathbb{P}\{\underbrace{\left.\left|X_{n}\right|>M\right\}}_{\text {complement }}
$$

complement of a closed interval

$$
\begin{aligned}
& \rightarrow \mathbb{P}\{X \leq x,|X| \leq M\}+\mathbb{P}\{|x|>M\} \text { whenever } \mathbb{P}\{X=x\}=0 \text { (assn.) } \\
& \\
& \leq \mathbb{P}\{X \leq x\}+\varepsilon . \\
& \limsup _{n} \mathbb{P}\left\{X_{n} \leq x\right\} \leq \mathbb{P}\{X \leq x\}+\varepsilon .
\end{aligned}
$$

A reverse ines. follows by the same argument with $X_{n} \leftrightarrow X$.
(i) \Rightarrow (iv) By Skorokhod's a.S. representation tho (p. III), we can assume whoa
that
Continuity of $h \Rightarrow \quad h\left(x_{n}\right) \rightarrow h(x)$ everywhere.
Boundedness of $h \stackrel{D C T}{ } E h\left(x_{n}\right) \rightarrow E h(x)$.
(iv) $\Rightarrow(v)$ is trivial.
$(v) \Rightarrow$ (ii) Smoothing: Fix any $a<b$ satisfying $\mathbb{P}\{X=a\}=P\{x=b\}=0$ Fix $\varepsilon>0$. \exists function h as in the conclusion satisfying

$$
\mathbb{1}_{[a+\varepsilon, b-\varepsilon]} \leq h \leq \mathbb{1}_{[a, b]} \text { pointruise. }
$$

Evaluate on x_{n}, take $\mathbb{E} \Rightarrow$

$$
\begin{aligned}
\mathbb{P}\left\{X_{n} \in[a, b)\right\} & \geqslant \mathbb{E} h\left(X_{n}\right) \\
& \rightarrow \mathbb{E} h(x) \text { (assumption) } \\
& \geqslant \mathbb{P}\{X \in[a+\varepsilon, b-\varepsilon]\}
\end{aligned}
$$

$$
\Rightarrow \liminf _{n} \mathbb{P}\left\{X_{n} \in[a, b]\right\} \geqslant \mathbb{P}\{X \in[a+\varepsilon, b-\varepsilon]\} \quad \forall \varepsilon>0
$$

Take $\varepsilon \downarrow_{0} \Rightarrow b y$ continuity of measure, $\left.R H S \rightarrow P\{X \in(a, b)\} \stackrel{(*)}{=} \mathbb{P} \mid x \in[a, b]\right\}$.

$$
\Rightarrow \liminf _{n} \mathbb{P}\left\{x_{n} \in(a, b]\right\} \geq \mathbb{P}\{x \in[a, b]\} \text {. }
$$

Prove the upper bound similarly (DM).

SKIP KELLY, TIGHTNESS NEXT TIME?
Q: \forall seq. of riv's (X_{n}) has a weakly convergent subsequence?
Ans: yes, almost.
T ~"Bolzano-Weierstrass"

THM (Helly's selection the) Let $\left(F_{n}\right)$ be a sequence of nondecreasing, uniformly bounded functions $R \rightarrow R$. Then \exists subsequence ($F_{n_{k}}$) and I a nonincreasing, right-continuous function F such that

$$
\lim _{k} F_{n_{k}}(x)=F(x) \quad \forall \text { point of continuity } x \text { of } F .
$$

i.e. $\sup _{n}\left\|F_{n}\right\|_{\infty}<\infty$

Proof (1) (diagonal argument)
\forall fixed x, Bolzano-Weierstrass $\Rightarrow \exists n_{k}=n_{k}(x)$:
($F_{n_{k}}(x)$) converges
Diagond argument $\Rightarrow \exists\left(n_{k}\right)$:
$\left(F_{n_{k}}(q)\right)$ converges $\forall q \in \mathbb{Q}$.
(Enumerate $Q=\left\{q_{1}, q_{2}, \ldots\right\}$. Find $\left(n_{k}^{(1)}\right)$ giving convergence at q_{1}, $\left(n_{k}^{(2)}\right) \subset\left(n_{k}^{(1)}\right)$ giving convergence on q_{2}, etc. Set $\left(n_{k}\right):=\left(n_{k}^{(k)}\right)$.

let $\quad G(q):=\lim _{k} F_{n_{k}}(q) \quad \forall q \in \mathbb{Q}$,

$$
F(x):=\inf \{G(q): q>x, q \in \mathbb{Q}\} \quad \forall x \in \mathbb{R} .
$$

F is nonincreasing (by def).
(2) (Sandwiching between 2 rationals)
$F_{\text {ix }} \forall x \in \mathbb{R}$ and $\forall \varepsilon>0$. $\exists p, q \in \mathbb{Q}$ such that $p<x<q$ and:
(*) $F(x)>G(q)-\varepsilon \quad$ (by deft of F)

(**) $F(x)<F(p)+\varepsilon$ if x is a pt of continuity of F.
(3) F is right-continuous? $\forall y \in(x, 9)$:

$$
\begin{aligned}
F(x) & <F(y) \quad \text { (monotonicity) } \\
\leq & G(9) \quad \text { def of } F) \\
< & F(x)+\varepsilon \quad\left(b_{y} *\right) \quad \Rightarrow|F(x)-F(y)|<\varepsilon \\
& -115-
\end{aligned}
$$

(4) If F is continuous at $x, \quad F_{n_{k}}(x) \rightarrow F(x)$?

$$
\begin{aligned}
F_{n_{k}}(x) & \leq F_{n_{k}}(q) \quad(\text { monotonicity }) \\
& \rightarrow G(9) \quad(\text { def of } G) \\
& \leq F(x)+\varepsilon \quad\left(f_{y} *\right) \quad \Rightarrow \limsup _{k} F_{n_{k}}(x) \leq F(x)+\varepsilon
\end{aligned}
$$

$\$ \quad F_{n_{k}}(x) \geqslant F_{n_{k}}(p) \quad$ (monotonicity)

$$
\begin{aligned}
& \rightarrow G(p) \quad(\text { def of } G) \\
& \geqslant F(p) \quad(\text { def of } F) \\
& >F(x)-\varepsilon \quad\left(b_{y} * *\right) . \Rightarrow \liminf _{k} F_{n_{k}}(x) \geqslant F(x)-\varepsilon . \quad \varepsilon \downarrow 0 \Rightarrow Q E D .
\end{aligned}
$$

Ex 1. Show that convergence may not hold fer all $x \in \mathbb{R}$
2. Show that it does if we drop the right continuity requirement for F
Q. Apply Helly S.T for CDF's F_{n},
ie nondecreasing, right-continusus functions satisfying $F_{n}(-\infty)=0, F_{n}(+\infty)=1$. will the limit F be a CDF?

Ans: Not necessarily: $F(-\infty)=0, F(+\infty)=1$ may fail
Example:

$F_{n} \rightarrow 0$ pointwise, but 0 is NOT a CDF. "MASS ESCAPES TO ∞ "

Q: How can we prevent the escape?
Def (Tightness) A sequence of riv's $\left(X_{n}\right)$ is tight if $\forall \varepsilon>0 \quad \exists M>0$:

$$
\mathbb{P}\left\{\left|x_{n}\right|>M\right\}<\varepsilon \quad \forall n .
$$

Examples - $X_{n}=n$ is not tight (see above)

- $x_{n} \sim$ Unif $[n, n+1]$ is not tight
- $X_{n} \sim N(0, n)$ is not tight (Check Nw)
- \forall riv's with mean 0, variance 1 are tight (chebyseer)

Observation: If $\left(F_{n}\right)$ in Kelly's ST. are CDF of tight $\left(X_{n}\right)$
then $F(-\infty)=0, F(+\infty)=1$
Proof $\forall \varepsilon>0 \quad \exists M>0$ (from det. of tightness)
$\forall x<-M: F(x) \leq F(-M)$ (monotonicity)

$$
\begin{aligned}
& =\lim _{k} F_{n_{k}}(-\mu) \quad \text { Kelly) } \\
& =\lim _{k} \frac{\underbrace{\mathbb{P}\left\{x_{n_{k}} \leq-M\right\}}_{\hat{\varepsilon}} \leq \varepsilon}{\hat{\varepsilon}} \quad \Rightarrow F(-\infty)=0 .
\end{aligned}
$$

\|. (Prokhorov's theorem d
Cor ("Compactness") \forall tight sequence of riv's $\left(x_{n}\right)$ \exists subsequence $\left(n_{k}\right)$ and a r.v. X such that

$$
X_{n_{k}} \xrightarrow{\omega} X .
$$

