GLT FOR DEPENDENT R.V'S

CLT let X_{1}, \ldots, X_{n} be mean zero random variables such that each X_{i} may depend on at molt d r.v's in $\left\{x_{1}, \ldots, x_{n}\right\}$. Let $\omega=x_{1}+\cdots+x_{n}$ have $\operatorname{var}(\omega)=1$. Then

$$
w_{1}(w, z) \leq C d^{2} \sum_{i=1}^{n} \mathbb{E}\left|x_{i}\right|^{3}
$$

where $Z \sim N(0,1)$.
Formally: consider a graph $G=(V, E)$ with $V=\{1, \ldots, n\}$. ("Dependency graph") $\forall i \in V$, let $N_{i}:=\{j \in V:(i, j) \in E\} \quad$ ("dependency neighborhood") Assume that:
(a) $\forall i \in V, \quad X_{i} \Perp\left\{x_{j}: j \notin N_{i}\right\}$

(b) Max. degree of G is $\leq d$.

Proof By Stein's lemma (p.133), it is enough to bound $\left|\mathbb{E} w f(\omega)-\mathbb{E} f^{\prime}(w)\right|$ for any f satisfying $\left\|f^{\prime}\right\|_{\infty} \leq 1,\left\|f^{\prime \prime}\right\|_{\infty} \leq 1$.

- $\mathbb{E} W f(w)=\sum_{i} X_{i} f(\omega)$.
$W_{i}:=\sum_{j \neq N_{i}} X_{j}$ Taylor approxinuction about W_{i} :

$f(w)=f\left(w_{i}\right)+\left(w-w_{i}\right) f^{\prime}\left(w_{i}\right)+\left(w-w_{i}\right) \frac{A_{i}^{2}}{2!}$ where $\left|A_{i}\right| \leq\left\|f^{\prime \prime}\right\|_{\infty} \leq 1$
Multiply both sides by x_{i}, sum over i, take $E \Rightarrow$
- (I) $=\sum_{i} \sum_{j \in N_{i}} \mathbb{E}\left[x_{i} x_{j}\right] \cdot \mathbb{E} f^{\prime}\left(w_{i}\right)$

$$
\begin{aligned}
& \left|f^{\prime}\left(w_{i}\right)-f^{\prime}(\omega)\right| \leq\left|\omega_{i}-\omega\right| \cdot\left\|f^{\prime \prime}\right\|_{\infty} \leq\left|x_{i}\right| \Rightarrow E f^{\prime}\left(\omega_{i}\right)=\mathbb{E} f(\omega)+B_{i} \text { where }\left|B_{i}\right| \leq \mathbb{E}\left|x_{i}\right| \\
& \Rightarrow I=\underbrace{\sum_{j \in N_{i}} \mathbb{E}\left[x_{i} x_{j}\right] \cdot \mathbb{E} f^{\prime}(\omega)+\sum_{i} \sum_{j \in N_{i}} E\left(x_{i} x_{j}\right] \cdot B_{i}}_{\sum_{i j j=1}^{n} \mathbb{E}\left(x_{i} x_{j}\right)=\mathbb{E}\left(\sum_{i=1}^{n} x_{i}\right)^{2}=\operatorname{Var}(\omega)=1}
\end{aligned}
$$

$$
\Rightarrow\left|(1)-\mathbb{E} f^{\prime}(w)\right| \leq \sum_{i} \sum_{j \in N_{i}} \underbrace{\mathbb{E}\left|x_{i} x_{j}\right| \cdot \mathbb{E}\left|x_{i}\right|}_{\Lambda \mid c s}
$$

$$
a^{2} b \leq a^{3}+b^{3} \text { (Young's inequality) }
$$

$$
\|c s \quad\| \cdot\left\|x_{i}\right\|_{2} \cdot x_{j}\left\|_{2} \cdot\right\| x_{i}\left\|_{2} \leq\right\| L_{i}\left\|_{3}^{2} \cdot\right\| x_{j}\left\|_{3} \leq\right\| x_{i}\left\|_{3}^{3}+\right\| x_{j} \|_{3}^{3}
$$

$$
\leq 2 d \cdot \sum_{i=1}^{n}\left\|x_{i}\right\|^{3}=2 d \sum_{i=1}^{n} E\left|x_{i}\right|^{3}
$$

- (III)
- Example: $W=X_{1} X_{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}$ where all X_{i} we mean 0 indef. $d=3 \Rightarrow W$ satisfies CLT. More generally, time series.

HW: $w=\sum_{i, j=1}^{n} x_{i} x_{j}$ is NOT always approx. normal.

$$
\begin{aligned}
& \sum_{\Delta\left|A_{i}\right| \leq 1} \sum_{i} \mathbb{E}\left|x_{i}\left(\omega-w_{i}\right)^{2}\right|=\sum_{i} \mathbb{E} \mid x_{i}(\underbrace{\left(\sum_{j \in N_{i}} x_{j}\right)^{2} \mid}_{\text {expand }} \mid \leq \sum_{i} \sum_{j, k \in N_{i}} \underbrace{\left|x_{i}\right|}_{\substack{\mathbb{E} \\
\mathbb{E}\left|x_{i}\right|^{3}+m_{j}-\left.x_{j} x_{i}\right|^{3}}} \\
& \leq d^{2} \sum_{i} \mathbb{E}\left|x_{i}\right|^{3} . \\
& \frac{E\left|x_{i}\right|^{3}+\mathbb{E}\left|x_{j}\right|^{3}+\mathbb{E}\left|X_{k}\right|^{3}}{3} \\
& \text { - Put in to (*) } \Rightarrow\left|\mathbb{E} \omega f(\omega)-\mathbb{E} f^{\prime}(\omega)\right| \leq\left|(1)-\mathbb{E} f^{\prime}(\omega)\right|+|\mathbb{I}| \leq 2 d^{2} \sum_{i} E\left|x_{i}\right|^{3} \text {. QED }
\end{aligned}
$$

Application: Triangles in Random Graphs

- Consider an Erdös-Réngi random graph $G \sim G(n, p)$ with $p=$ cons, $n \rightarrow \infty$.
$\Delta:=\#($ triangles in $G)$ satisfies CLT ?
$=\sum_{x y z} 1_{\Delta_{x y z}}$ where $\Delta_{x y z}=\{$ triple $x y z$ is a triangle $\}$ sum over ale ($\left.\begin{array}{l}n \\ 3\end{array}\right)$ triples

- $d \leqslant n$ (for a fixed triple $x y z$, there are $\leqslant n^{2}$ other triples that share a pair with xyz)
- $\mathbb{P}\left(\Delta_{x y z}\right)=p^{3} \Rightarrow \mathbb{E} \Delta=\binom{n}{3} p^{3} \simeq n^{3}$
- $\operatorname{Var}(\Delta)=\sum_{x y z, u v w} \underbrace{}_{\text {? }} \operatorname{Cov}\left(\mathbb{1}_{\Delta_{x y z}}, 1_{\Delta_{u v w}}\right)$
(a) All covariances are $\geq 0 \begin{aligned} & \text { ? ijh being a } \Delta \text { may only increase the prob of } \\ & \text { limn being a } \Delta\end{aligned}$
(b) There are $\geqslant n^{4}$ covariances that are $\geqslant 1$

For such two triples

$$
\operatorname{cov}\left(\mathbb{1}_{\Delta_{x y z}}, \mathbb{1}_{\Delta_{u v w}}\right)>0,
$$

There are $\binom{n}{4} \simeq n^{4}$ such pairs of triples

$$
\text { (a) } \&(b) \Rightarrow \operatorname{Var}(\Delta) \geqslant n^{4}
$$

$\frac{11}{\sigma^{2}} \quad \operatorname{Ber}\left(\rho^{3}\right)$

- Use CLT for $W:=\frac{\Delta-E \Delta}{\sqrt{\operatorname{ver} \Delta}}=\sum_{x y z} \frac{1_{\Delta x y z}-p^{3}}{\sigma} \Rightarrow$
\Rightarrow thy The \# of triangles Δ in Erdis-Renyi graph $G(n, p)$ is approximately normal: $d\left(\frac{\Delta-I \Delta}{\sqrt{\operatorname{Vara}}}, Z\right) \leq \frac{C(\rho)}{n}$ where $Z \sim N(0,1)$
Remark A finer analysis \Rightarrow Cl holds inf $n p^{3} \rightarrow \infty$

