CONDITIONAL EXPECTATION

- Fix a prob-space (Ω, Σ, p) throughout.

1. Conditioning on an event

Def let E, F be events. The conditional probability of E given F is

$$
P(E \mid F):=\frac{P(E \cap F)}{P(F)}
$$

- Interpetation:
($F, \Sigma \cap F$) is a new prob. space.

$E \mapsto \mathbb{P}(E \mid F)$ is a new prob. measure on $(F, \Sigma \cap F)$ (check!)
- Ex:

	Cancer	No
Smoker	8	32
No	16	304

$$
\begin{aligned}
& P(\text { Cancer } \mid \text { Smoke })=\frac{8}{8+32}=0.2 \\
& P(\text { Cancer } \mid \text { No smoke })=\frac{16}{16+304}=0.05
\end{aligned}
$$

- Relation with independence:

$$
E \Perp F \Leftrightarrow \mathbb{P}(E \mid F)=\mathbb{P}(E) \quad \text { if } \mathbb{P}(F) \neq 0
$$

- Ex suppose you know that your friend has 2 children. You saw one of them, and it was a girl.
What is the probability that the other child is also a girl?
$\Omega=\{G C, G B, B G, B B\}$ (older first), $P=$ uniform.
$F=$ "at least one child is a girl", $E=$ "both children are girls"

$$
\{G G, G B, B G\}
$$

$\Rightarrow P(E \mid F)=\frac{1 / 4}{3 / 4}=\frac{1}{3}$?! Why not $1 / 2$?

- Possibly add : (1) Memorylers property of Exp, Geom? (2) Bayes Formula?

Prop (Law of Total Probability) if $\Omega=F_{1} \cup \cdots \cup F_{n}$ then

$$
\begin{aligned}
\mathbb{P}(E)=\sum_{i} \mathbb{P}\left(E \mid F_{i}\right) \cdot P\left(F_{i}\right) \quad \forall E \in \Sigma \\
E=\bigcup_{i}\left(E \cap F_{i}\right) \Rightarrow P(E)=\sum P\left(E_{\cap} F_{i}\right)
\end{aligned}
$$

Bayes Formula
B.F. allows to swap the order of conditioning:

$$
P(F \mid E)=\frac{P(E \cap F)}{P(E)}=\frac{P(E \mid F) P(F)}{P(E)}=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{\prime}\right) P\left(F^{\prime}\right)}
$$

Ex A hiker went missing in the wilderness. she is one of the three regions with prob's $0.5,0.3,0.2$. Whenever anyone is lost in region 1, the search is successful with prob. 0.4, and to regions 2,3 it is 0.7 and 0.8 .
A search in region 1 was unsuccessful.
What is the prob. that the person is in region 1?
$R_{i}=$ "the hiker is in region $i ", 1-1$,
$U_{i}=$ "the search in region i is unsuccessful"

$$
\begin{aligned}
P\left(R_{1} \mid U_{1}\right)= & \frac{P\left(U_{1} \mid R_{1}\right) P\left(R_{1}\right)}{P\left(U_{1}\right)_{L T . P}^{\top}}=\frac{P\left(U_{1}\left(R_{1}\right) P\left(R_{1}\right)\right.}{P\left(U_{1} \mid R_{1}\right) P\left(R_{1}\right)+P\left(U_{1} \mid R_{2}\right) P\left(R_{2}\right)+P\left(U_{1} \mid R_{3}\right) P\left(R_{3}\right)} \\
& =\frac{(1-0.4) 0.5}{(1-0.4) 0.5+1 \times 0.3+1 \times 0.2}=0.375
\end{aligned}
$$

- Similarly,

$$
\left.\begin{array}{l}
P\left(R_{2} \mid U_{1}\right)=\frac{P\left(U_{1} \mid R_{2}\right) P\left(R_{2}\right)}{\text { same }}=0.375 \\
P\left(R_{3} \mid U_{1}\right)=\frac{P\left(U_{1} \mid R_{3}\right) P\left(R_{3}\right)}{\text { same }}=0.25
\end{array}\right\} \text { (heck! }
$$

- Thus, the prior probabilities $P\left(R_{1}\right), P\left(R_{2}\right), P\left(R_{3}\right)$ got updated to the posterior probabilities $P\left(R_{1} \mid U_{1}\right), P\left(R_{2} \mid U_{1}\right), P\left(R_{3} \mid U_{1}\right)$

PRIOR
(initial degree of belief)

POSTERIOR (degree of belief after incorporating new into U_{1})

Ex Another search in reg. 1 is unsuccessful
\Rightarrow prob's are further updated to

Remark Bayesian mode of learning (text \rightarrow image generative Al, spam filtering, etc.)

Def let x be a r.v. and F be an event.
The conditional expectation of x given F is

$$
\mathbb{E}[X \mid F]:=\frac{\mathbb{E}\left[\times \mathbf{1}_{F}\right]}{\mathbb{P}(F)}
$$

- EX: $X=$ lifetime, $F:$ smoker $\Rightarrow \mathbb{E}[X \mid F]=$ expected lifetime of a smoker.
- This def is more general than the previous one, if we define

$$
P\left(E(F):=\mathbb{E}\left[\mathbb{1}_{E} \mid F\right] .\right.
$$

So we will work with conditional expectation from now on. More generally:
2. Conditioning on a σ-algebra

Def let X be a riv, and $\mp \subset \sum$ be a σ-algebra.
The conditional expectation of X given F is a r.V. Y satisfying
(i) Y is \mathcal{F}-measurable - ie. $\{Y \in B\} \in \mathcal{F} \forall B \in B$
(ii) $\mathbb{E}\left[Y \mathbb{1}_{F}\right]=\mathbb{E}\left[\times \mathbb{1}_{F}\right] \quad \forall F \in \mathcal{F}$

Notation: $\quad Y=\mathbb{E}[x \mid \mathcal{F}]$.

- $N B: \mathbb{E}[x \mid F]$ is a random variable

Examples:
(a) Let $F \in \sum$ be \forall event, eg. "smoker" $F:=\sigma(F)=\left\{\phi, F, F^{c}, \Omega\right\}$
$\Rightarrow \mathbb{E}[X \mid F]=\left\{\begin{array}{l}\mathbb{E}[X \mid F) \text { if } F \text { occurs } \leftarrow \text { life expectancy of smokers } \\ \mathbb{E}\left[X \mid F^{c}\right] \text { if } F \text { does not occur elifexpectany of nonsmokers }\end{array}\right.$
Proof (i) Y is constant on F and F^{c}

$\Rightarrow \forall B \in B, \quad\{\gamma \in B\}=\gamma^{-1}(B)$ is ϕ, F, F^{\prime} or $\Omega \Rightarrow F \in \mathcal{F}$
(ii) $Y 1_{F}=\left\{\begin{array}{ll}E(X \mid F) & \text { if } F \text { occurs } \\ 0 & \text { if not }\end{array}\right\}$

$$
\left.\Rightarrow \mathbb{E}\left[Y \mathbb{1}_{F}\right]=\underbrace{P(F)}_{\frac{\mathbb{E}[X \mid X]}{\operatorname{Eef}\left[X \mathbb{1}_{F}\right]}}-14(F)=\mathbb{E} \right\rvert\, \times \mathbb{1}_{F}] \text {. } \quad \text { Similarly for } F^{\prime}, \phi, \Omega \text {. }
$$

(b) More generally, consider a partition

$$
\Omega=F_{1} \sqcup \cdots \sqcup F_{n}
$$

and let $F:=\sigma\left(F_{1}, \ldots, F_{n}\right)$. Then

$$
\mathbb{E}[x \mid F]=\mathbb{E}\left[x \mid F_{i}\right] \text { if } F_{i} \text { occurs. (Check!) }
$$

e.g. $F_{1}=\{$ person's age $\in(0,10)\}, F_{2}=\{$ gee $\in[10,20)\}, \ldots, F_{10}=\{$ age $\in[90,100)\}$ $x=$ person's height
$\Rightarrow \mathbb{E}[X \mid F]$ takes on 10 values $=$ ave $h i g h t$ in each group
(c) Same example, in the analytic form:
$\Omega=[0,1], \quad \Sigma=B(\mathbb{R}), \quad P=$ lebesgue means.
$x:[0,1] \rightarrow R$ an integrable function.
$\mathbb{E} X=\int_{0}^{1} x(\omega) d \omega$

$$
\begin{aligned}
& \mathbb{E}\left[x \mid F_{i}\right]=\frac{1}{\left|F_{i}\right|} \int_{F_{i}} x(\omega) d \omega \\
& \mathbb{E}[x \mid F](t)=\frac{1}{\left|F_{i}\right|} \int_{F_{i}} x(\omega) d \omega \quad \text { if } t \in F_{i}
\end{aligned}
$$

Remarks
(a) For the coarsest σ-algebra $\mathcal{F}=\{\phi, \Omega\}, \mathbb{E}(x \mid F)=\mathbb{E}(x)$

For the finest σ-algebra $\mathcal{F}=\Sigma, \quad \mathbb{E}[x \mid \Sigma]=x$ Intermediate $于 \Rightarrow$ interpolates between E $[x]$ and X.
(b) Fencodes available information (egg. smoking habits, age,...) $\mathbb{E}[X \mid \bar{\sigma}]$ encodes the best prediction of X given that info

No info $\Rightarrow E(x) \quad$ All into $\Rightarrow X$ (exact)
(c) General def. of $\mathbb{E}[x \mid F]$ allows us to condition on events of probability $=0$ (e.g. ave height of a 20×0.0 person)
3. Existence, Uniqueness

TuM \forall integrable r.v. X and $\forall \sigma$-algebra $F<\Sigma$,
(i) $\mathbb{E}[x \mid F]$ exists
(ii) and is unique: if Y, Y^{\prime} are both cond. exp's of X given F, then $Y=Y$ ass.

Proof of Existence is based on:
THM (Radon-Nikodym Tum)
let (Ω, F) be a measurable space. $(\Omega=$ countable union of mole sets with finite measures $)$ let μ, ν be two σ-finite measures on (S, Σ)
Assume $\nu \ll \mu(\mu(F)=0 \Rightarrow \nu(F)=0 \quad \forall f \in F)$
Then \exists 于-measurable function $f: S \rightarrow(0, \infty)$
st. $\quad \nu(F)=\int_{F} f d \mu \quad \forall F \in \mathcal{T}$

- wLoG $X \geq 0$ (otherwise decompose $X=X^{+}-x^{-}$)
- Define $\quad \nu(F):=\mathbb{E}\left[\times \mathbb{1}_{F}\right], F \in F$.
- Then ν is a finite $\frac{\text { measure on }(\Omega, F)}{\uparrow}$
since $E X<\infty \quad \uparrow \quad \begin{gathered}\text { disjoint } \\ F_{1}, F_{2}, \ldots \in F \\ \text { : }\end{gathered}$
\forall disjoint $F_{1}, F_{2}, \ldots \in \mathcal{F}$: by monotone convergence th m

$$
v\left(\bigcup_{i=1}^{\infty} F_{i}\right)=\mathbb{E}\left[\sum_{i=1}^{\infty} \times \mathbb{1}_{F_{i}}\right] \stackrel{\Im}{=} \sum_{i}^{\infty} \mathbb{E}\left(\times \mathbb{1}_{F_{i}}\right)=\sum_{1}^{\infty} v\left(F_{i}\right)
$$

- $V \ll P$ (if $P(F)=0$ then $\mathbb{E}\left[x \mathbb{1}_{f}\right]=0$)
- Apply $R N T \Rightarrow \exists f=: Y$ which is F-integrable and

$$
\begin{equation*}
\mathbb{E}\left[X \mathbb{1}_{F}\right]=\int_{F} Y d \mathbb{P}=\mathbb{E}\left[Y \mathbb{1}_{F}\right] \quad \forall F \in \mathcal{F} . \tag{D.}
\end{equation*}
$$

Proof of Uniqueness Assume $\mathbb{E}\left[X \mathbb{1}_{F}\right]=\mathbb{E}\left[Y \mathbb{1}_{F}\right]=\mathbb{E}\left[Y^{\prime} \mathbb{1}_{F}\right] \quad \forall F \in \mathcal{F}$ Subtract $\Rightarrow \mathbb{E}\left[\left(Y-Y^{\prime}\right) \mathbb{1}_{F}\right]=0$. Apply for $F:=\left\{Y-Y^{\prime} \geqslant 0\right\} \Rightarrow$

$$
\mathbb{E}\left(y-y^{\prime}\right)^{+}=0 \text {. Similarly, } \mathbb{E}\left(y-y^{\prime}\right)^{-}=0 \text {. }
$$

$$
\text { Add } \Rightarrow \mathbb{E}\left|Y-Y^{\prime}\right|=0 \Rightarrow Y=Y^{\prime} \text { a.s. }
$$

$$
-145-
$$

