Conditioning on a random variable
Def let X, Y be riv's. $\mathbb{E}[X \mid Y]:=\mathbb{E}[X \mid \sigma(Y)]=h(Y)$, function of Y.
allows to condition on events of measure O !

- Ex $X \sim U$ niff $[0,1] \quad y:=[n x]$ (integer part) $\quad E(x \mid y]=y+1 / 2$ (check!) $H_{y} h_{x} 1$
- Q : Suppose we want to use Y to predict x. Now should we choose $h: R \rightarrow R$ so as to minimize $\mathbb{E}(X-h(Y))^{2}$?
Ans: $h(Y)=\mathbb{E}[X \mid Y]$ is the best predictor (Cor p,150)
- Formula for discrete distributions?

SKIP let (x, y) take on finitely many or countable \# of values, joint pas:

$$
P(x, y):=\mathbb{P}\{X=x, Y=y\} .
$$

$\sigma(Y)=\sigma(\{Y=y\}: y$ ranges over all values Y takes $) \rightarrow$

$$
\begin{aligned}
\mathbb{E}[X \mid Y] & =\mathbb{E}[X \mid \sigma(Y)]=\mathbb{E}[X \mid Y=y\} \text { if }\{Y=y\} \text { occurs (E X(b)p.144) } \\
& =\frac{\mathbb{E}[X \mathbb{1}\{Y=y)\}}{\mathbb{P}\{Y=y\} \text { takes value } x \text { with prob. } p(x, y) \quad \forall x} \\
& =\frac{\sum_{x} x p(x, y)}{\sum_{x^{\prime}} p\left(x^{\prime}, y\right)}=\sum_{x} x p(x \mid y) \text { where } p(x \mid y)=\frac{p(x, y)}{\sum_{x^{\prime}} p\left(x^{\prime}, y\right)}
\end{aligned}
$$

$$
\Rightarrow \mathbb{E}[X \mid Y]=\sum_{x} x p(x \mid Y)
$$

Ho:

- Similarly for continuous distributions:

Prop If (x, y) have joint pdf $f(x, y)$, then

$$
\mathbb{E}[x \mid y]=\int_{-\infty}^{\infty} x f(x \mid y) d x \text { where } f(x \mid y):=\frac{f(x, y)}{\int_{-\infty}^{\infty} f\left(x^{\prime}, y\right) d x^{\prime}}
$$

Example 1 (Random sums)
Let x_{1}, x_{2}, \ldots be aid riv's with mean μ, variance σ^{2} let $N \in \mathbb{N}$ be an indep. r.v. with flite variance.
Compute mean and variance of $S_{N}=\sum_{i=1}^{N} X_{i}$

- \forall fixed $n \in \mathbb{N}, x_{1}, \ldots, x_{n}$ are independent \Rightarrow

$$
\begin{align*}
& \mathbb{E}\left[S_{N} \mid N=n\right]=\mathbb{E}\left[\sum_{1}^{n} X_{i}\right]=\mu n \text {. } \tag{x}\\
& \operatorname{Var}\left(S_{N} \mid N=n\right)=n \cdot \operatorname{Var}\left(X_{1} \mid N=n\right)=n \cdot \operatorname{Var}\left(X_{1}\right)=n \sigma^{2} . \\
& \text { Tinder }{ }^{\wedge} \\
& \mathbb{E}\left[S_{N}^{2} \mid N=n\right]-\underset{\mu}{\left(\mathbb{E}\left[S_{N} \mid N=n\right]\right)^{2}} \Rightarrow \mathbb{E}\left[S_{N}^{2} \mid N=n\right]=n \sigma^{2}+\mu^{2} n^{2} \tag{**}\\
& \text { - } \operatorname{LTP} \&(k) \Rightarrow \mathbb{E}_{N}=\mathbb{E}[\mu N]=\mu \mathbb{E} N e^{\text {natural. }} \\
& \operatorname{LTP} \&(k *) \Rightarrow \mathbb{E}\left[S_{N}^{2}\right]=\mathbb{E}\left[\sigma^{2} N+\mu^{2} N^{2}\right]=\sigma^{2} \mathbb{E} N+\mu^{2} \mathbb{E}\left[N^{2}\right] \\
& \Rightarrow \operatorname{Var}\left(S_{N}\right)=\mathbb{E}\left[S_{N}^{2}\right]-\left(\mathbb{E} S_{N}\right)^{2}=\sigma^{2} \mathbb{E} N+\mu^{\mu^{2} \mathbb{E}\left[N^{2}\right]-\mu^{2}(\mathbb{E} N)^{2}} \\
& =\sigma^{2} \mathbb{E} N+\mu^{2} \operatorname{Var}(N)
\end{align*}
$$

- This is a partial case of the law of total variance:

$$
\begin{aligned}
\operatorname{Var}(x)= & \mathbb{E} \int \operatorname{Var}(x \mid y \\
& -153-
\end{aligned}
$$

Ex. 2 (An Exchange Paradox)
There are 2 closed envelops,
one containing twice as much money as the other. You are asked to choose one of the envelops for yourself. You pick an envelop at random, open it, observe the content. You are given the option to exchange it for the other envelop. should you exchange or not?
$Y:=$ amount in the chosen envelop
x : = amount in the other envelop

$$
\begin{equation*}
\mathbb{E}[X]=\mathbb{E}[\mathbb{E}|X| Y]] \quad \text { (law of total expectation p.149) } \tag{*}
\end{equation*}
$$

Given Y, X can be $2 Y$ or $Y / 2$, each with probability $1 / 2$

$$
\begin{aligned}
& \Rightarrow \mathbb{E}[X Y]=2 Y \cdot \frac{1}{2}+\frac{Y}{2} \cdot \frac{1}{2}=1.25 Y \\
& \Rightarrow \mathbb{E}[X]=1.25 \mathbb{E}[Y]
\end{aligned}
$$

\Rightarrow you should always exchange! (and get 25% more money).

- Resolution of paradox (?)

Symmetry argument ($*$) is only justified if $\exists \infty$ resources. In reality, \& you observe a laze amount Y, you should conclude that the other envelop contains $Y / 2$ more likely than 27.

