Conditional distributions
Intrifive examples:

$$\cdot X|Y \sim N(o, Y^{2}) ulse Y \sim Unif(0,1]$$

$$\cdot (K, T) \sim Unif(unit disc) \Rightarrow X|Y \sim Unif(-(1-Y^{2}, J-Y^{2}))$$
Ceneral def:
Def (dt X & a r.v. and $F \in E$ be a T -algebra. Consider

$$\mu(B, c) := p\{X \in B \mid T\} = E[A_{|X \in B|} \mid T](c) \quad \forall B \in B$$

$$\|f \ \mu(\cdot, \omega) \text{ is a proble measure on } B(R) \text{ for all } c \geq D,$$
we call it the conductioned distribution of X on T .
A r.v. with distribution $\mu(B, \omega)$ is denoted X $|F|$ (XIV if $F \equiv \sigma(Y)$).
Prop (Conditional density) If (X,Y) has density $f_{K,Y}(X,Y)$, then XIY has density
 $f_{X|Y}(x|y) = \frac{f_{XX}(Xy)}{f_{Y}(y)}$, $x \in R$, whenever $Y = J$.
(ungoed) density $\forall y$ (total integral = 1)
 \cdot It remains to check that $\forall B \in B(R)$
 $\int f_{X|Y}(\cdot|y)$ is indeed a density $\forall y$ (total integral = 1)
 \cdot It remains to check that $\forall B \in B(R)$
 $\int \int f_{X|Y}(x,Y) dx^{2} = E[A_{|X \in B|} \mid \pi(Y)]$ a.s. (mY)
 $\int [(\int f_{X|Y}(x,Y) dx) A_{F}]^{2} = E[A_{|X \in B|} \mid \pi(Y)]$ a.s. (mY)
 $\int [(\int f_{X|Y}(x,Y) dx) A_{F}]^{2} = E[A_{|X \in B|} \mid \pi(Y)]$
 $K_{E} = K(x,y) dx A_{F}$.
 $K_{E} = K(x,y) dx A_{F}$.
 $K_{E} = K(x,y) dx A_{F}$.
 $K_{E} = F_{E}(x,y) dx A_{F}$.
 $K_{E} = K(x,y) dx A_{F}$.
 $K_{E} = F_{E}(x,y) dx A_{F}$.
 $K_{E} = K(x,y) dx A_{F}$.
 $K_{E} = K(x$

• Unfortunately,
$$\mu(\cdot, \omega)$$
 in Def p-153 may not be a problemeas a.s. (i)
(idea of an example: destroy the LHS for set $B=B_{\omega} \quad \forall \ \omega \in \mathcal{I}$)
 $\Rightarrow LKS is NOT a problemeasure $\forall \omega$.$

µ(·,·) is called a Markov kernel

Proof.
$$\forall r \in \mathbb{Q}$$
, consider
 $F(r, \omega) := \forall version of $\mathbb{E}[\mathbb{1}_{\{X \leq r\}} | \overline{\mathcal{F}}](\omega)$ (•)
Then \exists "nice" set $A \circ \mathbb{Q}$ with $\mathbb{P}(A) = 1$ such that $\forall \omega \in A$ we have :
(*) $F(r, \omega) < F(s, \omega)$ $\forall r < s$ in \mathbb{Q} $(A < B \Rightarrow \mathbb{E}[\mathbb{1}_{A} | \overline{\mathcal{F}}] \leq \mathbb{E}[\mathbb{1}_{B} | \overline{\mathcal{F}}] a.s.)$
(**) $F(r + \mathbb{1}_{n}, \omega) \to F(r, \omega)$ $\forall r \in \mathbb{Q}$ (conditional monotone convergence then)
(***) $F(r, \omega) \to \infty$, $F(-n, \omega) \to 0$ (same)
(***) $F(n, \omega) \to \infty$, $F(-n, \omega) \to 0$ (same)$

EXPONENTIAL DISTRIBUTION

$$\begin{array}{c} \underset{X = time of the first call at a police station after midnight. \\ \begin{array}{c} \underset{X = time of the first call at a police station after midnight. \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \end{array}$$
 \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? } \end{array}{0} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array}{0} \end{array} \\ \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array} \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \underset{X = time of X ? \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}

Def A r.y. X has the exponential distribution with parameter
$$\lambda$$
 if
 $p\{X > x\} = e^{-\lambda x}, \quad x > 0$.
Notation: $X \sim E \times p(\lambda)$. The parameter λ is called the rate.

•
$$pdf: f(x) = \frac{d}{dx}(1 - e^{-\lambda x}) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

• $\mathbb{E}X = \int_{0}^{\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}, \quad Vor(x) = \int_{\lambda^{2}}^{1} (Dr)$

· Exponential distribution is used to nodel waiting times (lifetime of iPhone, time until next customer arrives, etc.)

$$\frac{Pop}{Pop} (Memoryless property) \quad X \sim Exp(\lambda) \quad \text{satisfies}$$

$$P\{X > t+s \mid X > t\} = P\{X > s\} \quad \forall s, t > 0$$

$$P\{\text{wait} > s \text{ more minutes}\} \quad P\{\text{wait} > s \text{ minutes}\}$$

$$P\{\text{wait} > s \text{ more minutes}\} \quad P\{\text{wait} > s \text{ minutes}\}$$

$$P\{\text{wait} > s \text{ more minutes}\} \quad P\{\text{wait} > s \text{ minutes}\}$$

$$P\{\text{wait} > s \text{ more minutes}\} \quad P\{\text{wait} > s \text{ minutes}\}$$

$$P\{\text{wait} > s \text{ more minutes}\} \quad P\{\text{wait} > s \text{ minutes}\}$$

$$P\{\text{wait} > s \text{ more minutes}\} \quad P\{\text{wait} > s \text{ minutes}\}$$

$$P\{\text{wait} > s \text{ more minutes}\} \quad P\{\text{wait} > s \text{ minutes}\}$$

$$P\{\text{wait} > s \text{ minutes}\} \quad P\{\text{wait} > s \text{ minutes}\}$$

$$P\{\text{wait} > s \text{ minutes}\} \quad P\{\text{wait} > s \text{ minutes}\}$$

$$P\{\text{wait} > s \text{ minutes}\} \quad P\{\text{wait} > s \text{ minutes}\}$$

$$P\{\text{wait} > s \text{ minutes}\}$$

•
$$\underline{E_X}$$
 let $X_1 \sim E_Xp(\lambda_1)$, $i=1, 2$, be independent.
(a) $P\{X_1 \in X_2\} = E_{x_1}[X_1 \in X_2 | X_1] = E_{X_1}[e^{-\lambda_2 X_1}] = \int_{1}^{\infty} e^{-\lambda_2 X_1} \cdot \frac{-\lambda_1 X_2}{\lambda_1 + \lambda_2}$
(b) $\min(X_1, X_2) \sim E_Xp(\lambda_1 + \lambda_2)$
indep

$$\left[\begin{array}{c} P\{\min(X_1, X_2) > t\} = P\{X_1 \ge t, X_2 \ge t\} \stackrel{\text{de}}{=} e^{-\lambda_1 t} e^{-\lambda_2 t} = e^{-\lambda_1 + \lambda_2} \right] \\ \text{indenction} = \sum_{i=1}^{\infty} O_i \quad \min(X_1, \dots, X_n) \sim E_Xp(\lambda_1 + \dots + \lambda_n) \quad (M_{in-stability}) \\ \text{indenction} = \sum_{i=1}^{\infty} O_i \quad \min(X_1, \dots, X_n) \sim E_Xp(\lambda_1 + \dots + \lambda_n) \quad (M_{in-stability}) \\ \underline{E_X} \left(\begin{array}{c} \text{You arrive at a post office having 2 derks; bolk are Busy; no line.} \\ \text{You enter the vertice when either clerk becomes free.} \\ \text{The service times of clerks are } E_Xp(\lambda_1), \quad E_Xp(\lambda_2) \\ \hline F_{ind} \quad He e_Xpected frime from spend in the office. \\ \text{Xi} = remaining service time of the customer wilk elerk i \\ \sim E_Xp(\lambda_1) \quad f_Y mennoryless property. \\ \text{S} := your service hume. \quad T = \min(R_1, R_1) + S = 3 \\ \text{ET} = \mathbb{E}\min(R_2, R_2) + E_X = \frac{1}{\lambda_1 + \lambda_2} + E_X. \\ \quad \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (\lambda_1 + \lambda_2) \quad (E_X 16) \\ \text{ES} = E[S|R_1 < R_2) \quad P\{R_1 < R_2 + E[S|R_2 \le R_1] \quad P\{R_2 \le R_1\} = \frac{2}{\lambda_1 + \lambda_2} \Rightarrow E_T = \frac{2}{\lambda_1 + \lambda_2} \\ \quad \sum_{i=1}^{\infty} \frac{1}{\lambda_1 + \lambda_2} \quad (E_X 1e) \quad ($$

- 159-

• Alternative computation:
Condition on
$$1^{st}$$
 trial, we L.T.E:
 $E[x] = E[x|S] \cdot P(S) + E[x|F] \cdot P(F)$
1 P A 1-P
($x|F = x+1$ in distribution:
after 1 failure, the experiment resets.
 $\Rightarrow E[x|F] = 1 + E[x]$
 $\Rightarrow E[x] = p + (1 + E[x]) (1-p)$. Solving yields
 $E[x] = \frac{1}{p}$

Eχ	The only	memoryless	/ ₊ V.	with	continuous distr.	is	Exp(.)	
=	Theory	menorpless	(. v,	uik	discrete distr.	íŝ	(eom(.)	
	\mathcal{O}							

ΗW

Ex (Coupon collector's problem)
What is the expected number of coupons one needs to collect
before obtaining a complete collection of all n types of capons?
(Assume: each time one obtains a coupon,
it is equally likely to be one of n types)
where

$$X = X_0 + X_1 + \dots + X_{n-1}$$

 $X_1 = # additional coupons (after i types have been collected)$
in order to obtain a new type.
 $X_0 = X_0 + X_1 + \dots + X_{n-1}$
 $X_1 = # additional coupons (after i types have been collected)$
in order to obtain a new type.
 $X_0 = X_0 + X_1 + \dots + E(X_{n-1})$.
 $X_1 = E(X_0) + E(X_1) + \dots + E(X_{n-1})$.
 $X_1 \sim ?$ After i coupons have been collected,
each coupon we obtain is of a new type with probability
 $P_1 = \frac{n-1}{n} + \frac{n}{n-1} + \dots + \frac{n}{1} = \left[n\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)\right]$
 $Hence X_1 \vee Geom(P_1) \Rightarrow E(X_1) = \frac{1}{P_1}$
 $E[X] = \frac{1}{P_0} + \frac{1}{P_1} + \dots + \frac{n}{P_{n-1}} = \frac{n}{x} + \frac{n}{x} + \dots + \frac{n}{1} = \left[n\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)\right]$
 $Asymptotic analysis: $\sum_{k=1}^{n} \pm \infty \int_{0}^{n} \frac{dx}{x} = lu(x_1) \int_{0}^{n} = ln(n)$
 $\sum E[X] \approx n lun Logaristanic overampling.$$