Conditional distributions

- Intuitive examples:

- $X \mid Y \sim N\left(0, Y^{2}\right)$ where $Y \sim \operatorname{Unif}(0,1]$
- $(X, Y) \sim \operatorname{Unof}$ (unit disc) $\Rightarrow X \mid Y \sim \operatorname{Unif}\left(-\sqrt{1-Y^{2}}, \sqrt{1-y^{2}}\right)$
- General def:

Def let X be a r.v. and $F<\sum$ be a σ-algebra. Consider

$$
\mu(B, \omega):=\mathbb{P}\{x \in B \mid F\}_{(\omega)}=\mathbb{E}\left[\mathbb{1}_{\{x \in B\}} \mid F\right](\omega) \quad \forall B \in \mathbb{B} .
$$

or ale wexcept If $\mu(\cdot, \omega)$ is a prob. measure on $B(\mathbb{R})$ for all $\omega \in \Omega$, ave of $P_{\text {zero }}$. we call it the conditional distribution of x on J.

Trandom measure
A r.v. with distribution $\mu(B, \omega)$ is denoted $x \mid f$. ($x \mid y$ if $f=\sigma(y)$).
Prop (Conditional density) If (x, y) has density $f_{x, y}(x, y)$, then $x \mid y$ has density

$$
f_{X \mid Y}(x \mid y)=\frac{f_{x, y}(x, y)}{f_{Y}(y)}, \quad x \in \mathbb{R}, \quad \text { whenever } Y=y \text {. }
$$

$$
\text { F(narginal) density }=\int_{-\infty}^{\infty} f_{x, y}(x, y) d x
$$

Proof - $f_{X \mid Y}(\cdot \mid y)$ is indeed a density $\forall y$ (total integral $=1$) - It remains to check that $\forall B \in B(R)$

$$
\int_{B} f_{x \mid y}(x, y) d x \stackrel{?}{=} \mathbb{E}\left[\mathbb{1}_{\{x \in B\}}(\sigma(y)] \text { ass. (in } Y\right. \text {) }
$$

def of condenses. $\left[\left(\int f_{X \mid Y}\right)\right.$? $\{y \in R\}$ for some $R \in B(R)$

$$
\begin{gather*}
\stackrel{\text { elf of cord exp }}{\Longleftrightarrow}\left[\left(\int_{B} f_{x \mid y}(x, y) d x\right) \mathbb{1}_{F}\right] \stackrel{?}{=} \mathbb{E}\left[\mathbb{1}_{\{x \in B\}} \mathbb{1}_{F}\right\} \quad \forall \stackrel{\text { " }}{F} \in \sigma(Y) \\
\int_{R}\left(\int_{B} f_{X \mid Y}(x, y) d x\right) f_{Y}(y) d y \stackrel{?}{=} \mathbb{P}\{x \in B, y \in R\} \\
\text { " } \int_{R \times B} f(x, y) d x d y .
\end{gather*}
$$ "Continuous" version of LTP: $f_{X}(x)=\int_{-\infty}^{\infty} f_{X \mid Y}(x \mid y) f_{Y}(y) d y$; Bayes: $f_{Y \mid X}=\frac{f_{X \mid Y} \cdot f_{Y}}{f_{X}}$, etc.

REGULAR CONDITIONAL DISTRIBUTIONS $(S K I P P E D)$

- Unfortunately, $\mu(\cdot, \omega)$ in Def p-153 may not be a prob.meas asS. (2) $\left(\begin{array}{l}\text { idea of an example: destroy the LHS for set } B=B_{\omega} \\ \Rightarrow L H S \text { is Nor a prob, measure } \forall \omega .\end{array}\right.$

- Nevertheless:

THM (Conditional distributions) let X be a riv. and $F<\Sigma$ be a σ-algebra. Then $\forall B \in B(\mathbb{R}), \forall \omega \in \Omega \exists \mu(B, \omega)$ such that:
(i) $\forall \omega \in \Omega, \mu(\cdot, \omega)$ is a probability measure on $B(\mathbb{R})$
(ii) $\forall B \in B(\mathbb{R}), \mu(B,-)$ is a version of $\mathbb{E}, \mathbb{E}\left[\mathbb{1}_{\{x \in B\}} \mid F\right]$
$\mu(\cdot$,$) is called a Markov kernel$
Proof. $\forall r \in \mathbb{Q}$, consider

$$
\begin{equation*}
F(r, \omega):=\forall \text { version of } \mathbb{E}\left[\mathbb{1}_{\{x \leq r\}} \mid F\right](\omega) \tag{0}
\end{equation*}
$$

Then \exists "nice" set $A \subset \Omega$ with $P(A)=1$ such that $\forall \omega \in A$ we have:
(x) $F(r, \omega)<F(s, \omega) \quad \forall r<s$ in $\mathbb{Q} \quad\left(A<B \Rightarrow \mathbb{E}\left[1_{A} \mid F\right] \leq E\left[\mathbb{1}_{B} \mid F\right]\right.$ ass. $)$
(*\&) $F\left(r+\frac{1}{n}, \omega\right) \rightarrow F(r, \omega) \quad \forall r \in \mathbb{Q} \quad$ (conditional monotone convergence them)
(***) $F(n, \omega) \rightarrow \infty, F(-n, \omega) \rightarrow 0$ (same)

- For $\omega \in A$, extend (0) to \mathbb{R} by defining

$$
F(x, \omega):=\operatorname{ing}\{F(r, \omega): r>x\} \quad \forall x \in \mathbb{R} . \quad N(0,1)
$$

For $\omega \notin A$, let F be sone fixed calf, egg $F(x, \omega):=\Phi(x) \quad \forall x \in \mathbb{R}$.

SKIPPED

- (*), (**) $\Rightarrow F(x, 0)$ in (00) agrees with (0) on all rational x, is night-continuous, monotone and has correct Units $(0 / 1)$
$\Rightarrow F(\cdot, \omega)$ is a CDF $\forall \omega \in \Omega$.
$\Rightarrow \exists$ prob. measure $\mu(\cdot, \omega)$ with $\operatorname{cdf} F(\cdot, \omega)$.
- Ht remains to prove (ii), ie. to show that $\forall B \in B(R)$:
(a) $\mu(B, \cdot)$ is f-measwable
(b) $\int_{F} \mu(B, \omega) d \mathbb{P}(\omega)=\mathbb{E}\left[\mathbb{1}_{\{x \in B\}} \mathbb{A}_{F}\right] \quad \forall F \in \mathcal{F}$
(a) The family $P:=\{B \in B: \mu(B, \cdot)$ is f-measurable $\}$ is a A-system. $\left(\mu\left(\sum_{i=1}^{\infty} B_{i}, \omega\right) \stackrel{\unrhd^{\mu}(\cdot, \omega) \text { is a prob, measure }}{=} \sum_{i=1}^{\infty} \mu\left(B_{i}, \omega\right)\right.$. If each function in RKS is mble $\left.\begin{array}{c}\Rightarrow \text { their sum is mole }\end{array}\right)$ and contains all intervals $(-\infty, r], r \in \mathbb{Q}$ by (0) Dynkin's $\pi-\lambda$ theorem $\Rightarrow P \supset \sigma((-\infty, r]: r \in \mathbb{Q})=B(\mathbb{R})$.
(b) Fix $\forall F \in \mathcal{F}$,

Each side of (A) defines a prob measure as a function of B, and the equation holds for $\forall B=(-\infty, r], r \in \mathbb{Q}$

$$
\left(L u s=\int_{F} F(r, \omega) d P(\omega) \stackrel{(0)}{=} \mathbb{E}\left[\mathbb{1}_{\{x \leq r\}} \mathbb{1}_{F}\right]\right)
$$

\Rightarrow by the uniqueness of measures, (A) holds $\forall B \in B(R)$.

EXPONENTIAL DISTRIBUTION
Ex $X=$ time of the first call at a police station after midnight. Distribution of x ?

Todf $F(a)=P\{x \leq x\}=$?

Divide $[0, x]$ into n intervals of length a / n.
$p\{$ call during a given interval $\}=\lambda \cdot \frac{x}{n} \quad \begin{gathered}\text { proportional to the length) } \\ \text { of the interval }\end{gathered}$

$$
\Rightarrow P\{X>a\}=P\{\text { no call in }[0, x]\}
$$ coefficient of proportionality

$=P\{n o$ call in any of the intervals $\}$

$$
=\left(1-\frac{\lambda x}{n}\right)^{n} \longrightarrow e^{-\lambda x} \text { as } n \rightarrow \infty
$$

Thus, $\quad P\{x>x\}=e^{-\lambda x}, \quad a>0$

Def A r.4. X has the exponential distribution with parameter λ if

$$
P\{X>x\}=e^{-\lambda x}, \quad x>0 .
$$

Notation: $X \sim \operatorname{Exp}(\lambda)$. The parameter λ is called the rate

- pdf: $f(x)=\frac{d}{d x}\left(1-e^{-\lambda x}\right)= \begin{cases}\lambda e^{-\lambda x}, & x \geqslant 0 \\ 0, & x<0\end{cases}$

$$
\text { - } \mathbb{E X}=\int_{0}^{\infty} x e^{-\lambda x} d x=\frac{1}{\lambda}, \operatorname{Var}(x)=\frac{1}{\lambda^{2}} \text { (DIr) }
$$

- Exponential distribution is used to model waiting times (lifetime of iPhone, time until next customer arrives, etc.)

Prop (Memoryless property) $\quad X \sim E_{x p}(\lambda)$ satisfies

$$
P\{x>t+s \mid x>t\}=P\{x>s\} \quad \forall s, t>0
$$

$$
\left[\begin{array}{l}
\left.P\{\text { wait >s more minutes\} }\} \quad \frac{P\{\text { wait }>s \text { minutes }\}}{} \frac{P\{x>t+s\}}{P\{x>t\}}=\frac{e^{-\lambda(t+s)}}{e^{-\lambda t}}=e^{-\lambda s}=R K S\right]
\end{array}\right.
$$

- ie. $X \sim \operatorname{Exp}(\lambda) \Rightarrow x-t \mid x \geqslant t \sim \operatorname{Exp}(\lambda)$
- Ex (1) Let $X_{i} \sim E_{x p}\left(\lambda_{i}\right), i=1,2$, be independent. pdf of x_{1}
(a) $\mathbb{P}\left\{x_{1} \leq x_{2}\right\}=\mathbb{F}_{x_{1}}\left[x_{1} \leq x_{2} \mid x_{1}\right]=\mathbb{E}_{x_{1}}\left[e^{-\lambda_{2} x_{1}}\right]=\int_{0}^{\infty} e^{-\lambda_{2} x} \cdot \lambda_{1} e^{-\lambda_{1} x} d x=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}$
(b) $\min \left(x_{1}, x_{2}\right) \sim E_{x p}\left(\lambda_{1}+\lambda_{2}\right)$

$$
\left.\left(\sqrt{P\{\min }\left(x_{1}, x_{2}\right)>t\right\}=P\left\{x_{1} \geq t, x_{2} \geq t\right)^{\stackrel{\text { indep }}{=}} e^{-\lambda_{1} t} e^{-\lambda_{2} t}=e^{-\left(\lambda_{1}+\lambda_{2}\right) t}\right]
$$

induction \Rightarrow Cor $\min \left(x_{1}, \ldots, x_{n}\right) \sim E_{x p}\left(\lambda_{1}+\ldots+\lambda_{n}\right) \quad$ (Min-stability)
Ex (2) You arrive at a post office having 2 certs; both are Busy; no line.
You enter the service when either clerk becomes free.
The service times of decks are $E_{x p}\left(\lambda_{1}\right), E_{x p}\left(\lambda_{2}\right)$
Find the expected time you spend in the office,
$R_{i}:=$ remaining service time of the customer with clerk i $\sim \operatorname{Exp}\left(\lambda_{i}\right)$ by memoryless property.
$S:=$ your service time. $\quad T=\min \left(R_{1}, R_{2}\right)+S \Rightarrow$

$$
\begin{aligned}
& \mathbb{E} T=\mathbb{E} \underbrace{\min \left(R_{1} R_{2}\right)}_{2}+\mathbb{E} S=\frac{1}{\lambda_{1}+\lambda_{2}}+\mathbb{E} S \text {. } \\
& { }^{2} E_{x p}\left(\lambda_{1}+\lambda_{2}\right)\left(E_{x} 16\right) \\
& \mathbb{E S}=\mathbb{E}[\underbrace{\left[S \mid R_{1}<R_{2}\right]}_{S} \underbrace{\mathbb{P}\left\{R_{1}<R_{2}\right\}}_{\frac{11}{\lambda_{1}+\lambda_{2}}\left(E_{x} \mid a\right)}+\mathbb{E}[\underbrace{\left.S \mid R_{2} \leq R_{1}\right]}_{\text {V } 1 / \lambda_{1}} \underbrace{\mathbb{P}\left\{R_{2} \leq R_{1}\right\}}_{\lambda_{2}}=\frac{2}{\lambda_{1}+\lambda_{2}} \Rightarrow \mathbb{E} T=\frac{3}{\lambda_{1}+\lambda_{2}} \\
& \frac{\operatorname{Exp}_{2}\left(\lambda_{1}\right)}{2 \lambda_{\lambda_{1}}} \frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\left(E_{x_{1}}, 1 a\right)
\end{aligned}
$$

Ex (Geometric distribution) $\quad X \sim \operatorname{Geom}(P)$
of $X=$ \# of the first success in independent trials (each $=$ success wit prob witt probe).

- Alternative computation:

Condition on $1^{\text {st }}$ trial, use L.T.E:

$$
\begin{aligned}
& E[x]=\underbrace{E(x \mid s)}_{1} \cdot \underbrace{P(S)}_{P}+E[\underbrace{x \mid F}_{4}] \cdot \underbrace{P(F)}_{1-P} \\
& \text { (} x \mid F=x+1 \text { in distribution: } \\
& \text { after } 1 \text { failure, the experiment resets. } \\
& \Rightarrow E[x[F]=1+E[x] \\
& \Rightarrow E[x]=p+(1+E(x))(1-p) \text {. Solving yields } \\
& E[x]=\frac{1}{p}
\end{aligned}
$$

Also memoryless (Cheder.)

Ex The only memorgless riv. with continuous distr. is Exp (.) Theong memogless riv. with discrete distr. is Geom(.)

Ex (Coupon collector's problem)
What is the expected number of coupons one needs to collect before obtaining a complete collection of all n types of coupons?
(Assume: each time one obtains a coupon, it is equally likely to be one of n types) where

- $X=x_{0}+x_{1}+\cdots+x_{n-1}$
$X_{i}=$ \#additional coupons (after i types have been collected) in order to obtain a new type.

$$
E(X]=E\left(x_{0}\right)+E\left(x_{1}\right)+\cdots+E\left(x_{n-1}\right)
$$

- $X_{i} \sim$? After i coupons have been collected, each coupon we obtain is of a new type with probability

$$
p_{i}=\frac{n-i}{n} \text { \# new types }
$$

Hence $\quad X_{i} \sim \operatorname{Geom}\left(p_{i}\right) \quad \Rightarrow E\left[X_{i}\right]=\frac{1}{p_{i}}$

- $E[X]=\frac{1}{p_{0}}+\frac{1}{p_{1}}+\cdots+\frac{1}{p_{n-1}}=\frac{n}{n}+\frac{n}{n-1}+\cdots+\frac{n}{1}=n\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)$
- Asymptotic analysis: $\sum_{k=1}^{n} \frac{1}{k} \approx \int_{1}^{n} \frac{d x}{x}=\left.\ln (x)\right|_{1} ^{n}=\ln (n)$
$\Rightarrow \quad E[x] \approx n \operatorname{lu} n \quad$ Logarithmic oversampling.

