MARTINGALES
let $(\Omega, \Sigma, \mathbb{P})$ be a prob. space.
Def let $F_{1} \subseteq F_{2} \subseteq \ldots<\sum$ be a sequence of σ-algebras (a "filtration") A sequence of integrable rv's $\left(x_{1}, X_{2}, \ldots\right)$ is called a martingale if $\forall n \in N$:
(i) X_{n} is F_{n}-measurable (" $\left(x_{n}\right)$ is adapted to $\left.\left(F_{n}\right)^{\prime \prime}\right)$
(ii) $\mathbb{E}\left[X_{n+1} \mid F_{n}\right]=X_{n}$ a.s.

- Interpretation: $n=$ time $\Rightarrow\left(x_{n}\right)$ is a stochastic process.
$F_{n}=$ information available at time n
EXAMPLES:
(a) Simple random walk: $S_{n}=Y_{1}+\cdots+Y_{n}, Y_{i} \sim$ Rademacher ind is a martingale w.r.to $F_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$

$$
\begin{align*}
\sqrt{\mathbb{E}}\left[S_{n+1} \mid Y_{1}, \ldots, Y_{n}\right] & =\mathbb{E}\left[\begin{array}{l}
\left.S_{n} \mid Y_{1}, \ldots, Y_{n}\right] \\
S_{m b l e}^{\prime \prime}+Y_{n+1}
\end{array}\right. \\
& =S_{n}+\mathbb{E}\left[Y_{n+1}\right]=S_{n} . \tag{independent}
\end{align*}
$$

(6) More generally, partial sums of \forall mean zero riv's
(c) Random walk with a sticky wall:

$$
x_{0}=0 ; \quad x_{n+1}=\left\{\begin{array}{ll}
x_{n}+y_{n+1} & \text { if } x_{n}<N \\
x_{n} & \text { if } x_{n}=N
\end{array}\right\}
$$

(i) X_{n} is $\sigma\left(Y_{1}, \ldots, Y_{n}\right)$-mble $\left(X_{n}\right.$ is determined by $\left.Y_{1}, \ldots, Y_{n}\right)$
(ii) $\mathbb{E}\left[X_{n+1} \mid Y_{1}, \ldots, Y_{n}\right]=X_{n}$ in either case.

- Convenient to express as

$$
x_{n}=S_{n n T}
$$

where $S_{n}=Y_{1}+\cdots+Y_{n}$ is a simple random walk, $T=\min \left\{k: S_{k}=N\right\}$ is a stopping time
(d) More generally, a slowed-down random walk:

$$
X_{n+1}:=X_{n}+Y_{n+1} f\left(X_{n}\right) \quad \forall f: \mathbb{R} \rightarrow \mathbb{R} \text {, e.g }
$$

(e) Quadratic martingale:

If $S_{n}=Y_{1}+\ldots+Y_{n}$ where Y_{i} are ind mean O variance 1 then $S_{n}^{2}-n$ is a martingale.

$$
\begin{aligned}
& \left.\begin{array}{|c}
\mathbb{E}\left[S_{n+1}^{2}-(n+1) \mid Y_{1}, \ldots, Y_{n}\right] \\
\left(S_{n}^{11}+Y_{n+1}\right)^{2}
\end{array}\right)=\underset{\text { ramble }}{\mathbb{E}} \underbrace{S_{n}^{2}}_{\text {able }}+\underset{\text { index }}{2 S_{n} Y_{n+1}}+\underbrace{Y_{n+1}^{2}}_{\text {ind }}-\underbrace{n-1}_{\Omega} \mid Y_{1}, \ldots, Y_{n}] \\
& =S_{n}^{2}+2 S_{n} \underbrace{\mathbb{E}\left[Y_{n+1} \mid Y_{1}, \ldots, Y_{n}\right]}_{\vdots \text { (index.) }}+\underbrace{\mathbb{E}\left(Y_{n+1}^{2}\right]}_{2}-n-1=S_{n}^{2}-n .
\end{aligned}
$$

(f) Product martingale

If $Y_{1}, Y_{2}, \ldots \geqslant 0$ be indep. riv's with mean 1, then $X_{n}:=Y_{1} \cdots Y_{n}$ is a martingale.

$$
\begin{aligned}
& \underbrace{X_{n} Y_{n+1}}_{\text {male }}
\end{aligned}
$$

(g) in particular, St. Petersburg martingale:

$$
x_{0}:=1, \quad x_{n+1} \left\lvert\, x_{n}=\left\{\begin{array}{cc}
2 x_{n}, & \text { prob. } 1 / 2 \\
0, & \text { prob. } 1 / 2
\end{array}\right\}\right.
$$

(double the bet)
$\Rightarrow X_{n}=Y_{1} \ldots Y_{n}$ where $Y_{k}=\left\{\begin{array}{l}2, \text { prob. } Y_{2} \\ 0, \text { prob. } Y_{2}\end{array}\right\}$ id. $\mathbb{E}\left[Y_{k}\right]=1$.
(h) de Moire's martingale

If $S_{n}:=Y_{1}+\cdots+Y_{n}$ is a nonsymmetric r.walk: $Y_{k}=\left\{\begin{array}{l}1, \text { prob. } p \\ -1, \text { prob. } q=1-p\end{array}\right.$ then $X_{n}:=\left(\frac{q}{P}\right)^{S_{n}}$ is a martingale

$$
\bar{X}_{n}=\left(\frac{q}{p}\right)^{y_{1}} \cdots\left(\frac{q}{p}\right)^{y_{n}}, \quad E\left(\frac{q}{p}\right)^{y_{k}}=\left(\frac{q}{p}\right)^{1} \cdot p+\left(\frac{q}{p}\right)^{-1} \cdot q=q+p=1
$$

\Rightarrow product martingale.
(i) likelihood ratio test see [Walsh]

Assume a r.v. X has density f or g.
Decide which one, based on an ind sample $X_{1}, \ldots, x_{n} \sim X$.
Solution: compute the likelihood ratio $\Lambda_{n}:=\frac{\prod_{i=1}^{n} f\left(x_{i}\right)}{\prod_{i=1}^{n} g\left(x_{i}\right)}$
If X has density g, then $\left(\Lambda_{n}\right)$ is a martingale $\Gamma_{n}=Y_{1} \cdots Y_{n}$ where $Y_{i}=\frac{f\left(x_{i}\right)}{g\left(x_{i}\right)}$ are ind r.v's
with $\mathbb{E} Y_{i}=\int_{-\infty}^{\infty} \frac{f(x)}{g(x)} \cdot g(x) d x=1 \Rightarrow$ product martingale.

- Hence, under the g-hypothesis, $\left(\Lambda_{n}\right)$ does not "drift"

(j) Branching processes

Galton-Watson process: model of the size of population
Assume each member of n'th generation gives birth independently to a random \# of children, μ on average.
$Z_{n}:=$ \# individuals in nth generation.
$Z_{0}=1 ; \quad \mathbb{E}\left[Z_{n+1} \mid Z_{n}\right]=\mu Z_{n}$
$\Rightarrow \frac{Z_{n}}{\mu^{n}}$ is a martingale (divide by μ^{n} to check)
(k) Polya's urn

An un initially contains N white and M black balls.
One ball is randomly drawn from an urn; its color is observed; it is returned to the urn, and an additional ball of the same color is added to the un. Repeat.
$X_{n}:=$ fraction of white balls after n'th step is a martingale
If after n'th step the urn contains w white and b black balls,

$$
\begin{gathered}
X_{n+1}= \begin{cases}\frac{\omega+1}{\omega+b+1}, \text { prob }=\frac{\omega}{\omega+b} & \leftarrow w \text { bite ball drawn } \\
\frac{\omega}{\omega+6+1}, \text { prob }=\frac{b}{\omega+b} & \leftarrow \text { black ball drawn }\end{cases} \\
\mathbb{E}\left[X_{n+1} \mid \omega, b\right]=\frac{\omega+1}{\omega+b+1} \cdot \frac{\omega}{\omega+6}+\frac{\omega}{\omega+b+1} \cdot \frac{b}{\omega+b}=\frac{(w+1+b) \omega}{(\omega+b+1)(w+6)}=\frac{\omega}{\omega+6}=X_{n}
\end{gathered}
$$

(l) Door's martingale
let X be a r.v. with $\mathbb{E}|x|<\infty$ and $\left(F_{n}\right)$ be a filtration. Then

$$
X_{n}:=\mathbb{E}\left[x \mid 于_{n}\right]
$$

is a martingale.

$$
\left\lceil\mathbb{E}\left[x_{n+1} \mid F_{n}\right]=\mathbb{E}\left[\mathbb{E}\left[x \mid F_{n+1}\right) \mid F_{\nu}\right]=\mathbb{E}\left(x \mid F_{n}\right]=x_{n}\right]
$$

SIMPLE PROPERTIES

Prop． $1 \mathbb{E}\left[x_{n} \mid f_{m}\right]=x_{n \wedge m} \quad \forall n, m \in \mathbb{N}$

If $n \leq m$ then x_{n} is $F_{n} \subset 于_{m}$－mble $\Rightarrow \mathbb{E}\left(x_{n} \mid 于_{m}\right]=x_{n}$
If $n>m$ then $\mathbb{E}\left[X_{n} \mid F_{m}\right]=\mathbb{E}[\underbrace{\mathbb{E}\left[X_{n} \mid F_{n-1}\right]}_{X_{n-1}} \mid 于_{m}] \stackrel{\text { repeat }}{=} \mathbb{E}\left[X_{m} \mid 于_{m}\right]=x_{m}]$
Def Martingale differences：

$$
D_{1}:=x_{1}, \quad D_{n}:=x_{n}-x_{n-1} \quad \text { for } n=2,3, \ldots \quad \Rightarrow x_{n}=D_{1}+\ldots+D_{n}
$$

－$E D_{i}=0$（UTE）
－D_{i}, D_{j} are uncorrelated．More generally：
Prop 2．$\forall k \leq l \leq m \leq n: \quad \mathbb{E}\left(x_{l}-x_{k}\right)\left(x_{n}-x_{m}\right)=0$

$$
\mathbb{E}[\underbrace{\mathbb{E}\left[x_{l}-x_{k}\right)}_{F_{m}-m b l e}\left(x_{n}-x_{m}\right) \mid F_{m}]]=\mathbb{E}[\left(x_{l}-x_{k}\right) \underbrace{\underbrace{\mathbb{E}\left(x_{n}\right)}_{x_{m}\left(\rho_{m o p} \cdot 1\right)}-\underbrace{\mathbb{E}\left(x_{n}-x_{m} \mid F_{m}\right]}_{x_{m}}]=0 .}_{\left.x_{m}^{\prime \prime}\right)}
$$

－Thus，a martingale $=$ sum of uncorrelated mean O riv＇s except for D_{1}

