SUbMARTINGALES, SUPERMARTINGALES
Def if, instead of $\mathbb{E}\left[X_{n+1} \mid F_{n}\right]=X_{n}$, we have
" \geqslant " submartingale
" \leqslant " \Rightarrow supermartingale
Examples: (a) Biased random walk; more generally partial sums $S_{n}=Y_{1}+\cdots+Y_{n}$ of indep. r.v's with $E Y_{i} \geqslant 0$, is a submartingale

$$
\begin{aligned}
& \left.\sqrt{\mathbb{E}}\left[S_{n+1} \mid Y_{1}, \ldots, Y_{n}\right]=S_{n}+\mathbb{E}\left[Y_{n+1}\right] \geqslant S_{n}\right] \\
& S_{n}^{\prime \prime}+Y_{n+1}
\end{aligned}
$$

(b) \forall convex function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$,
if $\left(x_{n}\right)$ is a martingale then $\left(\varphi\left(x_{n}\right)\right)$ is a submartingale
$\left.\Gamma_{\text {Conditional }} \operatorname{Jensen}(\rho .148) \Rightarrow \mathbb{E}\left[\varphi\left(X_{n+1}\right) \mid 于_{n}\right] \geqslant \varphi\left(\mathbb{E}\left[x_{n+1} \mid F_{n}\right]\right)=\varphi\left(x_{n}\right)\right]$
(c) In particular, if $\left(x_{n}\right)$ is a martingale then

- $\left|x_{n}\right|^{p}$ is a martingale $\forall p \geq 1$;
- $\max \left(X_{n}, a\right)$ is a supermartingale $\forall a \in \mathbb{R}$

(d) If $\left(x_{n}\right)$ is a martingale and
$\left(A_{n}\right)$ is a determistic sequence then $Y_{n}=X_{n}+A_{n}$ is a submartingale

$$
\left[\begin{array}{l}
\mathbb{E}\left[Y_{n+1} \mid F_{n}\right]-Y_{n}=\underbrace{\prime \prime}_{\text {" }}=\underbrace{\mathbb{E}\left[x_{n} \mid F_{n}\right]}_{x_{n+1}^{\prime \prime}}+A_{n+1}-x_{n}-A_{n}=A_{n+1}-A_{n} \geq 0] \\
x_{n+1} \quad x_{n}+A_{n}
\end{array}\right.
$$

(e) $\left(B_{n}\right)$ needs not be deterministic. H can be random but predictable:

Def A sequence of riv's $\left(A_{n}\right)$ is predictable if

$$
A_{n} \text { is } F_{n-1} \text {-measurable } \forall n
$$

\Rightarrow com predict "1 day ahead"

Example: $A_{n}=$ your bet at time n (just before nth spin of the wheel) is based on what happened before (Spins 1,.., n-1)

- Example ($d-e$) is universal:

TMM (Doob's decomposition)

- \forall stochastic process $\left(X_{n}\right)_{n=0}^{\infty}$ adapted to a filtration $\left(F_{n}\right)_{n=0}^{\infty}$ can be decomposed as :

$$
X_{n}=M_{n}+A_{n}^{n^{-d r i f t}}
$$

where $\left(M_{n}\right)$ is a martingale and $\left(A_{n}\right)$ is predictable with $A_{1}=0$

- This decomosition is unique (up to ass.)
- If $\left(x_{n}\right)$ is a submartingale, $\left(A_{n}\right)$ is increasing ass.

Existence: guided by Example (d), define recursively

$$
\begin{equation*}
A_{0}:=0 ; \quad A_{n+1}-A_{n}=\underbrace{\mathbb{E}\left[X_{n+1} \mid F_{n}\right]}_{F_{n}-m b l e}-X_{n}, \quad n=0,1,2, \ldots \tag{*}
\end{equation*}
$$

- By induction, A_{n+1} is $于_{n}$-mble \Rightarrow predictable.
- Define $M_{n}:=X_{n}-A_{n} \Rightarrow F_{n}$-mble;

$$
\mathbb{E}\left[M_{n+1} \mid F_{n}\right]=\mathbb{E}\left[X_{n+1} \mid \sigma_{n}\right]-\mathbb{E}\left[A_{n+1} \mid F_{n}\right] \stackrel{(*)}{\rightleftharpoons} x_{n}-A_{n}=M_{n}
$$

$\Rightarrow\left(M_{n}\right)$ is a martingale.
$\underbrace{\sigma_{n}^{\dagger}-m b l e}_{A_{n+1}}$

- Uniqueness: \forall decomposition as in the statement, take conditional $E \Rightarrow$

$$
\mathbb{E}\left[X_{n+1} \mid F_{n}\right]=\underbrace{\mathbb{E}\left[M_{n+1} \mid F_{n}\right]}_{\| \begin{array}{l}
\text { (martingale) } \\
M_{n}=X_{n}-A_{n}
\end{array}}+\underbrace{\mathbb{E}\left[A_{n+1} \mid F_{n}\right]}_{{ }^{*} A_{n+1}\left(F_{n}-\text { mble }\right)}
$$

Rearrange the terms \Rightarrow

$$
A_{n+1}-A_{n}=\mathbb{E}\left(Y_{n+1} \mid F_{n}\right)-Y_{n} \Rightarrow \text { same as }(*) \Rightarrow \text { uniquely determined. }
$$

- If $\left(X_{n}\right)$ is a submartingale $\stackrel{(*)}{\Rightarrow} A_{n+1}-A_{n} \geqslant 0 \forall n$, ie. increasing. o
- Example: If $\left(Z_{n}\right)$ is a martingale then $\left(Z_{n}^{2}\right)$ is a submartingale \Rightarrow $\bar{\exists}$ incresing predictable sequence $A_{n}=:\left\langle Z_{n}\right\rangle$ s.t $Z_{n}^{2}-\langle z\rangle_{n}$ inder.meano a martingale. indef mean
- Prop $\langle Z\rangle_{n}=\sum_{i=1}^{n} 巨\left[\left(z_{i}-z_{i-1}\right)^{2} \mid F_{i-1}\right] \quad \ln$ particular, if $z_{n}=\sum_{i=0}^{n} Y_{i}^{\downarrow}$ then $\left\langle z_{n}\right\rangle=\sum_{i=0}^{n} \mathbb{E} Y_{i}^{2}$

Proof $G=\mathbb{E}\left[z_{i}^{2}-2 z_{i} z_{i-1}+Z_{i-1}^{2} \mid F_{i-1}\right]=E\left[z_{i}^{2} \mid F_{i-1}\right]-2 \underline{E}\left(z_{i} \mid F_{i-1}\right) z_{i-1}+z_{i-1}^{2}$

$$
=\mathbb{E}\left[z_{i}^{2} \mid F_{i-1}\right]-z_{i-1}^{2} \stackrel{(x)}{=}\langle z\rangle_{i}-\langle z\rangle_{i-1} \text {. Sum up } \rightarrow \square{ }^{\frac{\pi}{z_{i-1}}}
$$

- $|z\rangle_{n}=$ "predictable quadratic variation" of $\left(Z_{n}\right)$. W/o $E\left[\cdot\left|F_{i-1}\right|\right]$, just "quadratic variation" $[z]_{n}$.

MARTINGALE TRANSFORM
Prop let $\left(X_{n}\right)_{0}^{\infty}$ be a martingale, $\left(H_{n}\right)_{0}^{\infty}$ be a predictable sequence. Then

$$
(H \circ X)_{n}:=\sum_{i=1}^{n} \mu_{i} \underbrace{\left(x_{i}-x_{i-1}\right)}_{\text {martingale diff }} \text {, }
$$

is a martingale. martingale differences

$$
=\left(H_{0} x\right)_{n}+\underbrace{x_{n}}_{H_{n+1} \frac{H_{n+1}(\underbrace{\mathbb{E}\left[x_{n} \mid F_{n}\right]}_{x_{n+1}}}{x_{n}}-\underbrace{\|}_{x_{n}}\left[x_{n} \mid F_{n}\right]})=0 .
$$

Example: a gambling strategy
$X_{n}=$ net amount of money we win at time n if we bet $\$ 1$ each time $H_{n}=$ betting strategy (bet H_{n} at time n, e.g. ± 1)
$\Rightarrow(H \circ X)_{n}=$ our winnings at time n
Prop \Rightarrow In a zero-net game $\left(x_{n}\right)$
no matter how good a betting strategy (H_{n}),
the expected winnings are 0 .
"You can't beat the system"

Remark Martingale transform is at the heart of the construction of Ito integral

$$
\int_{0}^{T} Z_{t} d B_{t}=\lim _{\| \pi_{n} \rightarrow 0} \sum_{i=1}^{n} Z_{t_{i-1}}\left(B_{t_{i}}-B_{t_{i-1}}\right),
$$

STOPPING TIMES
Def A r.variable $T^{\epsilon N}$ is a stopping time w.r. to a filtration $\left(F_{n}\right)$ if

$$
\{T \leq n\} \in 于_{n} \quad \forall n \in \mathbb{N}
$$

Ex

Ex

$$
\{T>n\} \in 于_{n} \quad \forall n \in \mathbb{N}
$$

Examples: (a) constant, e.g. $T=10$.
(b) $\left(X_{n}\right)=$ symmetric r.walk with 1 wall

$$
T=\min \left\{n: X_{n}=N\right\}
$$

$\mathbb{E} T=\infty$ (even of $N=1$, see Ex. P. 150)
(c) $\left(X_{n}\right)=$ symmetric r. walk with 2 walls, starting at k :

$$
\begin{aligned}
& T:=\min \left\{n: X_{n} \in\{0, N\}\right\} \\
& \mathbb{E} T<\infty \text { a.s. } \quad \text { why ?) }
\end{aligned}
$$

let's compute it by conditioning on $1^{\text {st }}$ step:

$$
\begin{aligned}
& \underbrace{\mathbb{E} T}_{\frac{11}{t_{k}}}=\underbrace{\mathbb{E}[T \mid L]}_{t_{k-1}+1} \cdot \underbrace{P(L)}_{\frac{112}{11}}+\underbrace{\mathbb{E}[T \mid R]}_{t_{k+1}^{11}} \cdot \underbrace{P(R)}_{\left.\begin{array}{l}
11 / 2
\end{array}\right]} \\
& \Rightarrow\left\{\begin{array}{l}
t_{k}=\frac{t_{k-1}+t_{k+1}}{2}+1, k=1, \ldots, N-1 \\
t_{0}=t_{N}=0
\end{array}\right\} \Rightarrow t_{k}=k(N-k)=\mathbb{E} T \\
& \begin{array}{l}
\text { see also } \\
\text { [walsh p. 286] }
\end{array} \\
& \mathbb{E}\left(x_{T}^{2}-T\right)=\bar{W}\left(x_{0}^{2}-0\right)=k^{2}
\end{aligned}
$$

martingale given set $C \mathbb{R}$
(d) More generally, \forall hitting time: $T=\min \left\{n: \breve{X}_{n} \in{ }_{B}^{\prime}\right\}$
(e) Play until either won $\$ 100$ or have played 10 games:

$$
T=T^{\prime} \wedge 100 \text { where } T^{\prime}=\min \left\{n: X_{n}=100\right\}
$$

(f) Playing until reach absolute max is NOT a stopping tine.

Prop (Stopped martingale) If $\left(x_{n}\right)$ is a martuyale and T is a stopping time then $\left(X_{\text {TAn }}\right)$ is a martingale.

$$
\sqrt{X_{\operatorname{Tan}}}-X_{0}=\sum_{i=1}^{\operatorname{Tan}}\left(X_{i}-X_{i-1}\right)=\sum_{i=1}^{n} \underbrace{\mathbb{1}_{\{i \leq T}}_{\{i \leq T\}}\left(x_{i}-x_{i-1}\right)
$$

F $_{i-1}-m b l e$, since $\{T \geqslant i\}=\{T>i-1\} \in F_{i-1}$
\Rightarrow predictable.
Prop. $169 \Rightarrow\left(x_{\text {Tan }}-x_{1}\right)$ is a martingale.
Since $\left(x_{1}\right)$ is trivially a martingale $\left(x_{T_{1 n}}\right)$ is a martingale. \qquad

Remark $P_{r o p} \Rightarrow E X_{T_{1 n}}=E X_{0} \quad \forall n \in N$
\Rightarrow NO WINNING STOPPING STRATEGY IN PRESENCE OF A FIXED DEADINE n

Example: stop when reached $\$ 100$:

$$
\begin{aligned}
& T=\min \left\{n: X_{n}=100\right\} \\
& \mathbb{E} X_{\operatorname{Tan}}=X_{1}=0 \quad \text { How?! }
\end{aligned}
$$

- If $T \leq n$, goal is reached by deadline n :

$$
\Rightarrow X_{T a n}=100
$$

- But if $T>n$, goal is Not reached b deadline $X_{\text {TAn }}$ can be very negative (debt)
These two counterweigh each other.

Ex (Optional switching): HW (27ヵB 2019 P. 93)

