TOWARD RANDOM VARIABLES

i.e. if another J-alf. Econtary R then E must contary o(R) RECALL MEASURE THEORY: Def let I be V set, and RCS2. The smallest J-algebra that contains R is called the or-algebra generated by R, as is denoted $\mathcal{O}(\mathcal{R}) = \bigcap_{\mathcal{Z}: \mathcal{Z} \supset \mathcal{R}} \mathcal{Z}.$ $(I) \ \mathcal{D} = \{1, 2, 3, 4\} \ \mathcal{R} = \{\{1, 2\}, \{3\}, \{4\}\} \Rightarrow \mathcal{O}(\mathcal{R}) = \{1, 2\}, \{3\}, \{4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \emptyset, \mathcal{D} \}$ Examples: (2) Borel J-algebra: $D = \mathbb{R}^n$, $R = \{ open sets \}$ $B := \sigma([open sets 3]) = \sigma(\{intervals (-\infty, 2] \forall x \in \mathbb{R}\})$ (3) Product J-algebra: if (J,F) and (S,E) are measurable spaces, $f \times \Sigma := \sigma (F \times G : F \in F, G \in \Sigma)$ is a σ -algebra on $\Sigma \times S$. i.e. (IXS, FXI) is a measurable space. (4) Infinite product : If (It, Jt), tET are measurable spaces, $\prod_{t \in T} \overline{F}_t := \overline{\sigma} \left(\text{cylinders} \right) \text{ is a } \overline{\sigma} \text{ alg on } \prod_{t \in T} \Omega_t \text{, where a cylinder} = \prod_{t \in T} \overline{F}_t \text{ where } \overline{F}_t \in \overline{F}_t$ but finitely many ter. Def let (Σ, \overline{z}) and $(S, \overline{\Sigma})$ be measurable spaces. A map f: 2 + S is called a measurable function if B f'(B) & F Y B E E (*) f-'(6) ,2 • Key example: (S, Z) = (R, B)Borel · Instead of checking that f⁻¹(B) & F & B & B, (x) it is enough to check that $f^{-1}((-\infty, x]) \in F \quad \forall x \in \mathbb{R}$ (**) Assume (x) holds. Consider $\Sigma = \{ B \in B : f'(B) \in F \}$ SKIP Then I is a or-algebra (check!), and I contains all intervals (-00, 2) (by (x)) ⇒ by minimaloty, Z contains all Bord sets. => (*) holds - 14 -

Proj (Compasition) - BRIEFLY:
Assume: grining:
$$(R, \overline{x}) \rightarrow (S, \overline{x})$$
 and $f: (S', \overline{z}')$ are measurable. Then:
product space
 $(R, \overline{x}) = f(g_1(\omega), ..., g_n(\omega))$ is measurable.
 $(R, \overline{x}) \stackrel{g_1}{\rightarrow} (S, \overline{z}) \stackrel{f}{\rightarrow} (R, \mathbb{R})$
 $g_1, \overline{y}, g_2, \lim_{\lambda \to 0} (\omega) exists i is measurable.
 $g_1, \overline{y}, g_2, \lim_{\lambda \to 0} (\omega) exists i is measurable.$
 $g_2, \overline{y}, \overline{y} = (R, \mathbb{R})$
 $g_1(\omega) - \lim_{\lambda \to 0} g_2(\omega) = 0$
 $R AN DOM VARIABLES$
Dif they measurable function $X: (R, \overline{x}) \rightarrow (R, \mathbb{R})$ is called a readom variable.
(if andom vector $f : X: (R, \overline{x}) \rightarrow (R, \mathbb{R})$ is called a readom variable.
(if andom vector $f : X: (R, \overline{x}) \rightarrow (R, \mathbb{R})$ is called a readom variable.
(if andom vector $f : X: (R, \overline{x}) \rightarrow (R, \mathbb{R})$ is called a readom variable.
(if andom vector $f : X: (R, \overline{x}) \rightarrow (R, \mathbb{R})$ is called a readom variable.
(if andom vector $f : X: (R, \overline{x}) \rightarrow (R, \mathbb{R})$ is called a readom variable.
(if andom vector $f : X: (R, \overline{x}) \rightarrow (R, \mathbb{R})$ is called a readom variable.
(if andom vector $f : X: (R, \overline{x}) \rightarrow (R, \mathbb{R})$ is called a readom variable.
(if andom vector $f : X: (R, \overline{x}) \rightarrow (R, \mathbb{R})$ is called a readom variable.
(if there f a new phone
(d) Radom permutations: return N examption (wart time) is $X = 0$ is the form R in R is structure.
(e) break a chick at a readom R is $X = 0$ angle
(f) Pick 2 phs on a unit irde; $\theta = angle$
(g) An (imperfect) measurement of oceans to prove X is downplayed.
(g) An (imperfect) measurement of oceans to prove X is downplay G , R .
Notation: $\{\omega \in \Omega: X: X(\omega) \in B \} = X(B) = \{X \in B\}$ with downplay G , R .$

Def
$$X \stackrel{a.s.}{=} Y$$
 if $P\{\omega: X(\omega) = Y(\omega)\} = P(X=Y) = 1$

THE DISTRIBUTION OF A RANDOM VARIABLE

Def let X be a random variable on
$$(2, \overline{r}, \overline{P})$$
.
The distribution, or the law of X, is the probability measure d_X
on (R, B) defined by
 $d_X(B) := R\{X \in B\}$, $B \in B$
(it's a probability measure inded - check!)
• d_X encodes what values X takes and their probabilities.
Ex (a) Flip a coin twice, $X = \# H's$
 $\mu(101) = \frac{1}{4}$, $\mu(113) = \frac{1}{2}$, $\mu(123) = \frac{1}{9}$
(b) Break a strick at a random pt;
 (B) Break a strick at a random pt;
 $\chi = 1$
 $\mu(B) = meas(Bri[0,1)) \Rightarrow$
 $\chi = 1$
 $\mu(B) = meas(Bri[0,1)) \Rightarrow$
 $F(x) = d_X(-x_0, u]) = R\{X \leq x\}$

(1) is from lefore
(2) from before,
$$\exists \operatorname{prob.} \operatorname{meas} P \text{ on } (R, B) \text{ s.t.}$$

 $P((-\infty, x]) = F(x) \forall x.$
Define $X \text{ on } (R, B, P) \text{ by} \quad X(\omega) := \omega, \ \omega \in \mathbb{R}.$
 $\exists P(x) = P((-\infty, x]) = P(\{\omega \in \mathbb{R} : \bigcup \leq x\}) = P\{X \leq x\}.$
 $= -16 - -$

$$E_{X} (a) Flip a coin twice, X = \#his
(b) Break a stick at a random pt
(c) Break$$

-17-

.