Without fixed deadline?
OPTIONAL STOPPING

- Let $\left(x_{n}\right)$ be a martingale and T be a stopping time.

Q: is $\mathbb{E} X_{T}>\mathbb{E} X_{0}$ possible? (stopping strategy for making money)
Ans: sometimes. Examples:
(a) Symmetric random wall with sticky wall at N,
ie. $T=\min \left\{n: X_{n}=N\right\}$.
$X_{T}=N, X_{0}=0$ deterministically $\Rightarrow \mathbb{E} X_{T}>\mathbb{E} X_{0}$
However, $\mathbb{E T} T=\infty$ in K_{is} case.
Can one have $T<\infty$? Yes:
(6) St. Petersburg martingale $x_{0}=1, \quad x_{n} \left\lvert\, x_{n-1}= \begin{cases}2 x_{n-1}, & \text { prob } 1 / 2 \\ 0, & \text { prob } 1 / 2\end{cases}\right.$

Wait untie broke: $T=\min \left\{n: X_{n}=0\right\}$
$\Rightarrow X_{T}=0, X_{0}=1$ deterministically
$\operatorname{T\sim } \operatorname{Gem}(1 / 2) \Rightarrow E T=2$.
However, this game is too volatile: increasing bets.

TKM (Doob's optional stopping the)
let $\left(X_{n}\right)$ be a martingale and T be a stopping time.
Assume $\exists C>0$ s.t. at least one of the following conditions hold:
(i) $\left|x_{T_{1 n}}\right|<C$ a.s. $\forall n \leftarrow$ deadline
(ii) $T<C$ ass.
\leftarrow finite lifetime
(iii) $\mathbb{E} T<\infty$ and $\mathbb{E}\left[\left|x_{n+1}-x_{n}\right| \mid F_{n}\right]<C$ ass. $\forall n \leftarrow$ limiton bets

Then $E X_{T}=\mathbb{E} X_{0}$.
Proof (i) $X_{T a n}=X_{T} \quad \forall n \geqslant T \Rightarrow X_{T n n} \rightarrow X_{T}$ ass $(n \rightarrow \infty)$

$$
\left.\begin{array}{c}
\text { D.C. } T \Rightarrow \underset{E}{E} X_{T \wedge n} \rightarrow \mathbb{E} X_{T} \tag{-}\\
\text { stopped ingate } \|(\rho \cdot 171) \\
\mathbb{E} X_{0}
\end{array}\right\} \Rightarrow \mathbb{E} X_{T}=\mathbb{E} X_{0} .
$$

(ii) $X_{T a n}=x_{0}+\sum_{i=1}^{\operatorname{Tan}}\left(X_{i}-x_{i-1}\right)$

$$
\Rightarrow\left|X_{T n n}\right| \leq\left|X_{0}\right|+\sum_{i=1}^{T}\left|X_{i}-X_{i-1}\right|=: M
$$

- Since $T<C$ ass, this ${ }^{\uparrow}$ sum has at most C terms, all integrable $\Rightarrow \mathbb{E} M<\infty$.
- Thus $\left(X_{\text {Tan }}\right)$ is dominated by an integrable r.V.M. Finish as in (i).
(iii)

$$
\text { i) } \begin{aligned}
M= & \left|X_{0}\right|+\sum_{i=1}^{\infty} \mathbb{1}_{\{i \leq T\}}\left|X_{i}-X_{i-1}\right| . \\
\Rightarrow \mathbb{E} M & \leq \mathbb{E}\left|X_{0}\right|+\sum_{i=1}^{\infty} \mathbb{E}[\mathbb{E}[\underbrace{\mathbb{1}_{\{T>i-1\}} \text { is }}_{{ }^{*}\{T \geqslant i\}}\left|x_{i-1}-x_{i-1}\right| \mid F_{i-1}]] \\
& =\mathbb{E}\left|X_{0}\right|+\sum_{i=1}^{\infty} \mathbb{E}[\mathbb{1}_{\{T \geqslant i\}} \underbrace{\mathbb{E}\left[\left|x_{i}-x_{i-1}\right| \mid F_{i-1}\right]}_{C}] \\
& \leq \mathbb{E}\left|x_{0}\right|+c \sum_{i=1}^{\infty} \mathbb{P}\{T \geqslant i\}
\end{aligned}
$$

"I ET<> (integrated fail formula)
$<\infty$
Finish as before.

APPLICATIONS
startat k
(A) Gambler's Ruin : $\mathbb{P}($ reach N before 0$)=$?

Sym. random walk with 2 walls. O.S.T.(i) applies \Rightarrow for $T=\min \left\{n: x_{T} \in\{0, N\}\right.$

$$
\begin{aligned}
& E X_{T}=\mathbb{E} X_{0}=k \\
& X \in\{0, N\} \\
& N \cdot P\{X=N\}
\end{aligned} \longrightarrow P\{X=N\}=\frac{k}{N}
$$

We recovered the result of Gambler's Ruin problem (p.146)
(B) Expected hitting time of $\{0, N\}=$?

Consider the quadratic martingale $\left(X_{n}^{2}-n\right)$,
apply O.S.T. (i) $\left(\left|X_{\tan }\right| \leq N \forall n\right)$

$$
\begin{aligned}
& \text { apply O.S.T. (i) }\left(\left|X_{\text {Tan }}\right| \leq N \forall n\right) \\
& \Rightarrow \mathbb{E}\left[X_{T}^{2}-T\right]=\mathbb{E}\left[X_{0}^{2}-0\right]=k^{2} \Rightarrow \mathbb{E}[T]=\frac{\mathbb{E}\left[X_{T}^{2}\right]-k^{2}}{\left(\mathbb{N _ { N }} \cdot \frac{k}{N}\right.}=k(N-k) \\
& \text { we recovered the result on } P .170 \text {. }
\end{aligned}
$$

(B) Wald's equation
let z_{1}, z_{2}, \ldots be ind riv's with finite mean, T be a stopping time. Then

$$
\mathbb{E}\left[\sum_{i=1}^{T} Z_{i}\right]=\mathbb{E}[T] \cdot \mathbb{E}\left[Z_{i}\right]
$$ wish ET< $<\infty$.

Proof $S_{0}:=0, S_{n}:=Z_{1}+\cdots+Z_{n} \Rightarrow X_{n}:=S_{n}-n \mu$ is a martingale Then OST (iii) applies

$$
\begin{align*}
& (\mathbb{E}[\underbrace{Z_{n+1}^{\prime \prime}-\mu}_{X_{n+1}-x_{n} \mid} \text { is } F_{n}]=\mathbb{E}\left|Z_{n+1}-\mu\right| \leq \mathbb{E}\left|Z_{1}\right|+|\mu|=C<\infty) \\
& \Rightarrow \mathbb{E} X_{T}=\mathbb{E} X_{0}=0 \\
& \underbrace{S_{T}-T \mu}_{S_{T}^{\prime \prime}} \Rightarrow \mathbb{E} S_{T}=\mathbb{E}(T) \mu . \tag{D.}
\end{align*}
$$

HW: Show by example that independence assumption can't be removed:

$$
Z_{n}=z \sim \text { Rademacher; } \quad T=\left\{\begin{array}{lll}
2 & f & z=1 \\
1 & \text { if } & z=-1
\end{array}\right.
$$

(c) Symmetric random walk. $T=$ time to get from 0 to 1 1.e. $S_{n}=\sum_{i=1}^{n} Z_{i}$ indep. Rademacher

$$
T=\min \left\{n: S_{n}=1\right\} .
$$

$\mathbb{E} T=\infty$
If $\overline{\mathbb{I}} T<\infty$ then, by wald's equation,

$$
\mathbb{E}[\sum_{i=1}^{T} Z_{i} Z_{i}^{\text {id }}{ }^{\text {Rademacher }}=\mathbb{E}(T) \cdot \underbrace{\mathbb{E}\left(Z_{1}\right)}_{!}=0 \text {. But } \sum_{i=1}^{T} Z_{i}=1 \text { deterministically, } G]
$$

\uparrow We recovered the result on P. 151 .
(D) Prgp (Distribution of T) $\forall n \in \mathbb{N}$:

$$
\mathbb{P}\{T=2 n-1\}=\frac{1}{2 n-1}\binom{2 n}{n} 2^{-2 n} \quad \approx \frac{1}{2 \sqrt{\pi}} n^{-3 / 2}, n \rightarrow \infty
$$

Proof. Product martingale: fix $\forall \theta \in \mathbb{R}$;

$$
X_{0}:=1, \quad X_{n}:=\frac{\exp \left(\theta S_{n}\right)}{M(\theta)^{n}}=\prod_{i=1}^{n} \frac{\exp \left(\theta z_{i}\right)}{\mathbb{E} \exp \left(\theta z_{i}\right)}
$$

where $M(\theta)=\operatorname{Eexp}\left(\theta Z_{1}\right)=\frac{e^{-\theta}+e^{\theta}}{2}$.
"MGR"

The stopped martingale $X_{\text {TAn }}$ is bounded:

$$
0 \leqslant X_{\operatorname{Tan}} \leqslant \frac{\exp (\theta \cdot 1)}{1^{n}}=e^{\theta}
$$

- O.S.T. (i) applies and yields

$$
\left.\begin{array}{c}
\mathbb{E} X_{T}=\mathbb{E} X_{0}=1 \tag{*}\\
\| \\
\mathbb{E}\left[\frac{\exp \left(\theta \left(\theta S_{T}^{\prime}\right.\right.}{\|}\right) \\
M(\theta)^{T}
\end{array}\right\} \Rightarrow \mathbb{E}\left[M(\theta)^{-T}\right]=e^{-\theta}
$$

- Generating function $\mathbb{E}\left(s^{\top}\right]=$? $\quad \forall s>0$.

Change var's to $\frac{1}{s}=\mu(\theta)=\frac{e^{-\theta}+e^{\theta}}{2}$ varies in $[1, \infty)$
$\Rightarrow S$ varies in $(0,1)$.

$$
-175-
$$

$$
\begin{aligned}
& \text { Solving } \Rightarrow e^{-\theta}=\frac{1 \pm \sqrt{1-s^{2}}}{s} \\
& (x) \Rightarrow \mathbb{E}\left[s^{\top}\right]=\frac{1 \pm \sqrt{1-s^{2}}}{s}, \quad s \in(0,1]
\end{aligned}
$$

Considering s to we see that the "-" sign is valid \Rightarrow

$$
\begin{gathered}
\mathbb{E}\left(s^{T}\right]=\frac{1-\sqrt{1-s^{2}}}{s}, \quad s \in(0,1] \\
\| \\
\sum_{k=1}^{\infty} s^{k} \mathbb{P}\{T=k\} \quad \text { Taylor series }(s \downarrow 0) \\
\sum_{n=1}^{\infty} \frac{1}{2 n-1}\binom{2 n}{n} 2^{-2 n} \cdot s^{2 n-1}
\end{gathered}
$$

Matching the coefficients $\Rightarrow D$.

- Combinatorial proof?
- Martingales in continuous time

