EXPECTATION OF A RANDOM VARIABLE
Recall deft of lebesgue integral (meannce theory, Durrett 1.4): (Ω, F, μ) prob-space, $f: \Omega \rightarrow R$ measurable.

- For indicator functions $\int \mathbb{1}_{E} d_{\mu}:=\mu(E)$
- For simple Rundions $\int\left(\sum_{1}^{n} a_{i} E_{E_{2}}\right) d \mu:=\sum_{1}^{n} a_{i} \mu\left(E_{i}\right)$ ©disiont
For nonnegative mole functions

$$
\int f d \mu:=\sup \left\{\int g d \mu: 0 \leq g \leq f, \quad g \text { mble }\right\}
$$

- For \forall mile functions: $f=f^{+}+f^{-}, \quad \int f d \mu:=\int f^{+} d \mu-\int f d \mu$.
f is integrable $f \int f d \mu$ exists $\left.\left.\in R \cup\right|_{ \pm \infty}\right\} \Leftrightarrow f^{+}, f^{-}$integrable $\Leftrightarrow|f|$ integrable.

$$
\cdot \int_{E} f d \mu:=\int f \mathbb{1}_{E} d \mu .
$$

Def let X be ar.v. on (Ω, F, P). Then

$$
\mathbb{E}[X]:=\int X d \mathbb{P}
$$

"expected value", "mean", "expectation"

Ex $X=\#$'s is 2 flips

$$
\begin{aligned}
& \text { Prob: } 1 / 4 \quad 1 / 4 \quad 1 / 4 \quad 1 / 4 \\
& \Omega=\{\mu x, H T, T u, T\} \\
& \mathbb{E}(x)=2 \cdot \frac{1}{4}+1 \cdot \frac{1}{4}+1 \cdot \frac{1}{4}+0 \cdot \frac{1}{4}=\text { (1) } \\
& \begin{array}{lllll}
\times & \downarrow & \downarrow & \downarrow & \downarrow \\
2 & 1 & 1 & 0
\end{array}
\end{aligned}
$$

Simple function
Prop $E x$ is uniquely determined by the distribution \mathcal{Z}_{x} of x
Γ_{1} For simple riv's $x=a_{i}$ with prob. p_{i}, i.e.
def of 1
2. General case is determined by simple riv's

Expressing $\bar{E} X$ in terms of distribution \mathscr{L}_{x} ?
Note: $\operatorname{Rr} \cdot X$ on (Ω, F, μ) has the same distr as

$$
\text { riv. } Y(x):=x \text { on }\left(R, B, \mathscr{L}_{x}\right)
$$

$$
\mathscr{L}_{x}^{\prime \prime}(\{x \in R: x \in B\})=\mathcal{I}_{x}(B)
$$

$\xrightarrow{\text { PRop }} \forall$ r.v. X,

$$
\mathbb{E} X=\int_{-\infty}^{\infty} x d L_{x}
$$

More generally: \forall mable $g:(\mathbb{R}, B) \rightarrow(\mathbb{R}, B)$:

$$
\mathbb{E} g(x)=\int_{-\infty}^{\infty} g(x) d f_{x}
$$

(same proof; note that $x \stackrel{\text { dist }}{=} y g(x) \stackrel{\text { dist }}{=} g(y)$)
Expressing $\mathbb{E} X$ in terns of $C D F: \quad F(x)=\mathbb{P}\{x \leq x\}=\mathscr{L}_{X}((-\infty, x])$

$$
E X=\int_{-\infty}^{\infty} x d F(x) \leftarrow(\text { daff Lebesgue-Stielties integral })
$$

PROPERTIES OF EXPECTATION (follow from properties of lebesgue integral)

- linearity: $\mathbb{E}\left[\sum_{i=1}^{N} a_{i} x_{i}\right]=\sum_{i=1}^{N} a_{i} \mathbb{E} X_{i}$
- Constant : $X=a$ ass $\Rightarrow E X=a$.
- Monotonicity : $X \leq Y$ ass $\Rightarrow \mathbb{E} X \leq \mathbb{E}$
- Dominated Convergence: $X_{n} \rightarrow X$ ass $\&\left|X_{n}\right| \leq Y$ a.s. $\forall_{n} \& E|Y|<\infty$

$$
\Rightarrow \mathbb{E}\left[X_{n}\right] \rightarrow \mathbb{E}[X]
$$

Examples: (a) \sum angles of \forall triangle $=\pi \quad$ A probabilistic proof:

- Project the Δ onto a random line (uniform orientation)
- \# disappearing vertices $=1$ always
- $X_{a}:=\left\{\begin{array}{ll}1 & \text { if vertex a disappears } \\ 0 & \text { otherwise }\end{array}\right\} ; X_{b}, X_{c}$ similarly

$$
\begin{aligned}
& \Rightarrow X_{a}+X_{b}+X_{c}=1 \text { a.s. } \\
& \Rightarrow \mathbb{E}\left[X_{a}\right]+\mathbb{E}\left[X_{b}\right]+\mathbb{E}\left[X_{c}\right]=1
\end{aligned}
$$

- But $\mathbb{E}\left[X_{a}\right]=\mathbb{P}\{$ vertex a disappears $\} \quad$ (deft of lebesgue integral: $\int \mathbb{1}_{E} d P=P(E)$)
$=P\{$ normal of the line \in cone $(a)\}=\frac{a}{\pi}$

$$
\Rightarrow \frac{a}{\pi}+\frac{b}{\pi}+\frac{c}{\pi}=1 \quad \Rightarrow a+b+c=\pi
$$

(6) (Derangements p.11)

What is the expected $\#$ of students who receive their own exam?

$$
\begin{aligned}
& \stackrel{\prime \prime}{x} \\
& \text { i receives own exam }
\end{aligned}
$$

$$
\Rightarrow \mathbb{E} X=\sum_{i=1}^{n} \mathbb{E} X_{i}=\sum_{i=1}^{n} \underbrace{\mathbb{P}\{\text { student i receives own exam }\}}_{1 / n}=1 .
$$

DISCRETE DISTRIBUTIONS
Def X has discrete distr. If \mathcal{L}_{x} is supported on a finite or countable set介
x takes on finite or countable \# of values x_{1}, x_{2}, \ldots.
\Rightarrow Probability mass function $x_{i} \longmapsto p\left\{X=x_{i}\right\}$ determines distrain of X. $\mathbb{E} X=\int_{-\infty}^{\infty} x d \mathcal{L}_{X}=\sum_{i} x_{i} \mathbb{P}\left\{X_{i}=x_{i}\right\} \quad$ More generally: $\mathbb{E} g(X)=\sum_{i} g\left(x_{i}\right) P\left\{X=x_{i}\right\}$

Ex (a) Bernoulli distribution: $X \sim \operatorname{Ber}(p)$ if $P\{x=1\}=p, P(x=0\}=1-p$. $\mathbb{E} X=1 \cdot p+0 \cdot(1-p)=p$.
(b) egg. indicator $X=\mathbb{1}_{E}$ of an event $E . \quad X \sim \operatorname{Ber}(P)$ with $P=P(E)$.
(c) $X=$ \#Heads in 2 flips

$$
\mathbb{E} X=O \cdot \mathbb{P}\{X=0\}+1 \cdot \mathbb{P}\{X=1\}+2 \cdot P(X=2)=0 \cdot \frac{1}{4}+1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}=1
$$

(d) $X \sim \operatorname{Unif}\left\{x_{1}, \ldots, x_{n}\right\} \Rightarrow \mathbb{P}\left\{X=x_{i}\right\}=\frac{1}{n} \Rightarrow E X=\frac{1}{n} \sum_{1}^{n} x_{i}=\operatorname{arithmetiz}$ mean
(e) (St. Petersburg Paradox)

The initial stake (money in the pot) is $\$ 2$.
\rightarrow The player tosses a for win.
If $T \Rightarrow$ game ends, the player wins whatever is in the pot.
If $\mathrm{H} \Rightarrow$ stake doubler, game continues.
What would be a fair price to pay the casino for entering this game?
$X=$ player's winnings .

$$
\begin{aligned}
& P\{x=2\}=1 / 2 ; R\{x=4\}=1 / 4, \\
& E[X]=2 \cdot \frac{1}{2}+4 \cdot \frac{1}{4}+8 \cdot \frac{1}{8}+\cdots=\infty
\end{aligned}
$$

Ans: \forall price. Remarks: Volatility, financial bubbles.

- Median is more stable. Med $(x)=\mu$ if

$$
P\{x \leq \mu\} \geq \frac{1}{2}, \quad P\{x \geq M\} \geq \frac{1}{2}
$$

- In the St. Pete's paradox, $\operatorname{Med}(x) \in[2,4]$
(f) : Number of cycles in a random permutation
- Recall: permutation $=$ a rearrangement of n distinct objects There are n ! permutations
- \forall permutation breaks down into cycles.

For example:
(Q) What is E\#(cycles) in a random permutation?
drawn from the set of all n ! permutations with uniform probability.

- Intuition: $1^{\text {st }}$ cycle has length $\sim n($ e.g. $n / 2)$, next $n / 4, \ldots \Rightarrow \log n$.
- Thu The expected \# of cycles in a random permutation of n elements is

$$
\sum_{k=1}^{n} \frac{1}{k} \approx \ln n+0.58
$$

Proof. To each element in a cycle of length k, assign weight $:=1 / k$.
Sum of all weights $=$ \#cycles
Egg, hare sum= $\begin{aligned} & 1+1+1+1=4\end{aligned}$

- Formally, let
Y_{j} : = length of the cycle the element j is in;

$$
X=\sum_{j=1}^{n} \frac{1}{Y_{j}}
$$

Linearity $\Rightarrow E[X]=\sum_{j=1}^{n} \underbrace{E\left[\frac{1}{Y_{j}}\right]}_{T}=n \cdot \underbrace{E\left[\frac{1}{Y_{1}}\right]}_{k}$
all equal by symmetry?

$$
E\left[\frac{1}{y_{1}}\right]=\sum_{k=1}^{n} \frac{1}{k} \underbrace{P\left\{Y_{1}=k\right\}}_{\|}
$$

$P\{$ element 1 is in a cycle of length $k\}=$?

- $P\{1$ is in a cycle of length 1$\}=\frac{(n-1)!}{n!}=1 / n \quad \begin{gathered}\text { \# ways to permit } \\ \text { on }\end{gathered}$

$$
\text { \#ways to chose } \pi(1) \quad \begin{aligned}
& \text { \# ways to permute } \\
& \text { Other } n-2 \text { people }
\end{aligned}
$$

\square $\vdots \vdots$

$$
\Rightarrow E\left[\frac{1}{y_{1}}\right]=\sum_{k=1}^{n} \frac{1}{k} \cdot \frac{1}{n} \Rightarrow E[x]=\sum_{k=1}^{n} \frac{1}{k} \quad \text { QED }
$$

