IEX in terms of CDF
($k=\omega$):
Prop (Integrated tail formula) \forall nonnegative r.v. X :

$$
\mathbb{E} X=\int_{0}^{\infty} \mathbb{P}\{X \geqslant t\} d t=\sum_{k=1}^{\infty} \mathbb{P}\{X \geqslant k\}
$$

of X is integer-valued
Application: the longest increasing subsequence in a random permutation.

longest increasing subsequence. length $L(\pi)=4$

TAM $c \sqrt{n} \leq \mathbb{E} L(\pi) \leq C \sqrt{n}$
(following prob-examples-cool. pdf)
Proof Upper bound $\forall k=1, \ldots, n$:

This bound is trivial for $k \leq e \sqrt{n}$. Will use of for $k \geqslant 2 e \sqrt{n} 7$ where $\cdots \leq \frac{1}{4^{k}}$

$$
0-1+
$$

$$
\begin{align*}
& \mathbb{E} L(\pi)=\sum_{\ell=1}^{n} P\{L(\pi) \geq k\} \leq\lceil 2 e \sqrt{n}\rceil+\underbrace{\sum_{k \geq\lceil 2 e \sqrt{n} 7} \frac{1}{4^{k}}}_{\hat{L}} \leq C \sqrt{n} . \tag{i}\\
& \text { integrated tail } \\
& \text { er bound follows by symmetry from }
\end{align*}
$$

Erdös-Szekeres Thu (1935):
\forall given $k, l \quad \forall$ sequence of distinct real numbers with length at least $(k-1)(l-1)+1$ has either an increasing subsequence of length k, or a decreasing subsequence of length l.
(proof by pigeonhole principle -wiki)
$\Rightarrow \forall$ permutation has either increasing or decreasing subsequence of length $c \sqrt{n}$.
$\Rightarrow L(\pi)+D(\pi) \geqslant c \sqrt{n}$ ans. \quad andes. But $L(\pi), D(\pi)$ have the sane distribution (symmetry)

$$
\mathbb{E L}(\pi)+\underbrace{\mathbb{E} D(\pi)}_{\mathbb{E}^{\prime \prime} L(\pi)} \geq C \sqrt{n} \quad \Rightarrow \mathbb{E} L(\pi)>C \sqrt{n} / 2 \quad \square . \quad \mathbb{P}\left\{\frac{C(\pi)-2 \sqrt{n}}{n^{1 / 6}} \leq t\right\} \rightarrow C D F \text { (Tracy-Widom dis(r.) }
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathbb{P}\{L(\pi) \geqslant k\} \leq \mathbb{P}\{\exists \text { subsequence of length } k \text { : increasing }\}=\mathbb{P}\binom{\bigcup\{\text { subset. is increasing }\})}{\text { union bound } \geq \sum \mathbb{P}\{\text { subset. is increasing }\}=\binom{n}{k} \cdot \frac{1}{k!} \quad \begin{array}{l}
\text { of length } k
\end{array}} .
\end{array} \\
& \text { union bound } \geq \sum_{\text {subsequences }} P\{\text { subset. is increasing }\}=\binom{n}{k} \cdot \frac{1}{k!} \\
& \text { of length } k \text { stirling: } k!\geq(k / e)^{k} \\
& \left.\leq \frac{n^{k}}{k!} \cdot \frac{1}{k!} \stackrel{\downarrow}{=} \frac{e \sqrt{n}}{k}\right)^{2 k} \text {. }
\end{aligned}
$$

(ABSOLUTELY) CONTINUOUS DISTRIBUTIONS
Recall from measure theory:
THM (Radon-Nikodym Tum)
let (S, Σ) be a measurable space. ($S=$ countable union of $m b l e$ sets with finite measures) let μ, ν be two σ-finite measures on (S, Σ)
Assume $\mu \ll \lambda$ (absolutely continuous) $(\lambda(A)=0 \Rightarrow \mu(A)=0 \quad \forall A \in \Sigma)$
Then \exists measurable function $f: S \rightarrow 10, \infty$) ("density")
s.t. $\mu(B)=\int_{B} f d \lambda \quad \forall B \in \Sigma$

- $\mu(B)=\int_{B} 1 d \mu \quad " \Rightarrow f d \lambda=1 d \mu \quad \Rightarrow " f=\frac{d \mu}{d \lambda}$
"Differentiation"
- More generally: \forall measurable function $g: S \rightarrow \mathbb{R}$:

$$
\int g d \mu=\int g f d x
$$

"Change of variable"
For indicators, this is RNT \Rightarrow follow def of lebesgue integral.] -DIY

Def A random variable X has an (absolutely) continuous distribution if its distribution \mathscr{L}_{x} is absolutely continuous w.r. to the lebesgue measwe, 1 on \mathbb{R}.
$R N T \Rightarrow \exists$ density of $x: \quad f:=\frac{d \mathcal{L}_{x}}{d \lambda}$ ("Pdf", probability density function of x)

- Probabilities in terms of pdf: \forall Bored $B \subset \mathbb{R}$:

$$
\begin{equation*}
\mathbb{P}\{X \in B\} \stackrel{\text { def }}{=} \mathcal{L}_{X}(B) \stackrel{\text { ANT }}{=} \int_{B} f d \lambda^{\frac{L}{\lambda}} \text {, ie. } P\{X \in B\}=\int_{B} f(x) d x \tag{*}
\end{equation*}
$$

- Intuitive meaning of density: Lebesgue differentiation |tam: take $B=(B-\varepsilon, b+\varepsilon) \Rightarrow$

$$
f(b)=\lim _{\varepsilon \not 0} \frac{1}{2 \varepsilon} \int_{b \varepsilon}^{b+\varepsilon} f(x) d x=\lim _{\varepsilon 10} \frac{1}{2 \varepsilon} \mathbb{P}\{|x-b| \leq \varepsilon\} \text {, i.e. }
$$

$$
R\{|x-6| \leq \varepsilon\}=2 \varepsilon \cdot f(6) \quad \text { for shade } \varepsilon>0
$$

$$
\begin{aligned}
& R \mid 1: \\
& 25-
\end{aligned}
$$

- CDF \leftrightarrow PDF: For $B=(-\infty, x],(*)$ gives
$F(x)=\int_{-\infty}^{x} f(y) d y \xrightarrow{\text { differentiate }}$

$$
f(x)=F^{\prime}(x)
$$

wherever F^{\prime} exists, which is a.e. by lebesgue differentiation theorem
\Rightarrow the distribution of X is determined $b y$ $\rho d f$, pm, or $c d f$.

- EX in terms of Pdf: $\mathbb{E X}^{\rho \cdot 19}=\int_{-\infty}^{\infty} x d \mathcal{Z}_{X} \stackrel{R N T}{=} \int_{-\infty}^{\infty} x f(x) d x \quad \begin{gathered}\text { canaloppes to } \\ \text { for discrete riv. }\end{gathered} \quad X=\sum_{i} x_{i} R\left\{X=x_{i}\right\}$ More generally, $\quad E g(x)=\int_{-\infty}^{\infty} g(x) f(x) d x$

Prop (Characterization of Pdf)

1. \forall r.V. X with absolutely continuous distribution, the pdff of X is an integrable function sit.

$$
\begin{equation*}
f \geqslant 0 \text { and } \int_{-\infty}^{\infty} f(x) d x=1 \tag{0}
\end{equation*}
$$

2. \forall integrable function $f, R \rightarrow \mathbb{R}$ that sati) ties (0) is the Pdf of some r.V.X.

Proof 1. $f \geqslant 0$ by RNT, $\int_{-\infty}^{\infty} f(x) d x \stackrel{(* R 25)}{=} \mathbb{P}\{x \in(-\infty, \infty))=1$.
2. Define

$$
\begin{equation*}
\mu(B):=\int_{B} f d \lambda \quad \forall \text { Bore } B \text {. } \tag{00}
\end{equation*}
$$

Then μ is a probability measure on (\mathbb{R}, B) (by properties of lebesgue meas)
Now let $X(x)=x$ on (\mathbb{R}, B, μ)

$$
\Rightarrow \quad \mathscr{L}_{X}(B)=\mu(B) \stackrel{(100)}{\int_{B} f d \lambda \Rightarrow f \text { is the } p d f \text { of } X \text {. } . \text {. } \quad \Rightarrow \quad \text {. }}
$$

Example (a) $X \sim$ Uni $[a, b]$

pdf

$$
\mathbb{E} X=\int_{-\infty}^{\infty} x f(x) d x=\frac{1}{b-a} \int_{a}^{b} f(x) d x=\left.\frac{1}{b-a} \cdot \frac{x^{2}}{2}\right|_{a} ^{b}=\frac{b^{2}-a^{2}}{2(b-a)}=\frac{a+b}{2} .
$$

(b). A stick of unit length is broken into 2 pieces at random. Compute the expected length of the piece that contains a given $p+p \in[0,1]$

$$
\begin{aligned}
& \text {, } \\
& \mathbb{E} l(X)=\int_{-\infty}^{\infty} l(x) f(x) d x=\int_{0}^{1} l(x) d x=\int_{0}^{p}(1-x) d x+\int_{p}^{1} x d x=\frac{1}{2}+p(1-p) \text {. }
\end{aligned}
$$

