INEQUALITIES
Thy (Jensen's inequality) If $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function then

$$
\varphi(\mathbb{E} x) \leq \mathbb{E} \varphi(x)
$$

let $a x+b$ be a tangent to $\varphi(x)$ at $x_{0}=\mathbb{E} X$ $\Rightarrow \quad \varphi(x) \geqslant a x+b \quad \forall x \in \mathbb{R}$.
Substitute $x=x$, take expectation \Rightarrow

$$
\mathbb{E} \varphi(x) \geqslant a \mathbb{E} x+b=a x_{0}+b=\varphi\left(x_{0}\right)=\varphi(\mathbb{E} x) .
$$

strict ines. \rightarrow KW?
Ex: $\|x\|_{L^{p}}:=\left(\mathbb{E}|X|^{p}\right)^{y_{p}}$ increase in p
To check $\|x\|_{L^{p}} \leq\|x\|_{L^{a}}$ for $p<q$, apply Jensen for $\varphi(x)=|x|^{9 / p}$]

THM (Markov's inequality) \forall r.v. $X \geqslant 0$:

$$
\mathbb{P}\{x \geq t\} \leq \frac{\mathbb{E} x}{t}
$$

Proof $x \geqslant t \mathbb{1}_{\{x \geqslant t\}} \quad \forall x, t \geqslant 0$.
Apply this for X and take expectations on both sides:

$$
\mathbb{E} x \geq t \mathbb{P}\{x \geq t\} .
$$

- Prop (Chebyshev's inequality) $\forall r . v . \times$ with mean μ, variance σ^{2} :

$$
P\{|x-\mu| \geqslant t\} \leqslant \frac{\sigma^{2}}{t^{2}} \quad \forall t>0
$$

Proof $\mathbb{P}\{|x-\mu| \geqslant t\}=\mathbb{R}\left\{(x-\mu)^{2} \geqslant t^{2}\right\} \leqslant \frac{\mathbb{E}(x-\mu)^{2}}{t^{2}} \quad\binom{$ Markov for }{$(x-\mu)^{2}}$

$$
=\sigma^{2} / t^{2} . \quad Q E_{D}^{t^{2}}
$$

Ex: With prob $\geqslant 0.88$, at most 3 students get their our exams $\binom{\mu=\sigma^{2}=1,31}{t=1 / 3}$

OPTIMALITY - Markov's inequality is best possible of one only knows EX

MW

- Chebysher's is best possible f one only knows $\mathbb{E x}, \operatorname{Var}(x)$.

Ex $X \sim N(0,1): \quad$ Che $\Rightarrow \mathbb{P}\{|x|>t\} \leq \frac{1}{t^{2}}$ much weaker than the Gcoussican tail bound (p.28!) However, a trick: $f_{x} \forall \lambda>0$; Markov

$$
\begin{aligned}
& \mathbb{P}\{x>t\}=\mathbb{P}\left\{e^{\lambda x}>e^{\lambda t}\right\} \stackrel{\downarrow}{\leq} e^{-\lambda t} \mathbb{E}\left[e^{\lambda x}\right] \\
& =\exp \left(-\lambda t+\lambda^{2} / 2\right) \\
& \begin{array}{r}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{\lambda x} e^{-x^{2} / 2} d x=e^{\lambda^{2} / 2} \quad \text { (check! M(FF) }
\end{array}
\end{aligned}
$$

optimize $\lambda=t$

$$
=\exp \left(-t^{2} / 2\right) \leftarrow \text { Gaussian tail bound! }
$$

INDEPENDENCE

Def Events E, F are independent $(E \Perp F)$ if

$$
\mathbb{P}(E \cap F)=\mathbb{P}(E) \cdot P(F)
$$

Ex Flip a coin twice, $E:=\left\{k\right.$ of $\left.\left.1^{\text {st flip }}\right\}\right\}, \quad F=\left\{H\right.$ on $2^{\text {nd }}$ flip $\}$

$$
\mathbb{P}(E \cap F)=\mathbb{P}(|n k|)=\frac{1}{4} ; \quad \mathbb{P}(E)=\mathbb{R}(F)=\frac{1}{2} \Rightarrow E \mathbb{F} .
$$

$\operatorname{Prop}(\underline{\text { Stability }}) E \Perp F \Rightarrow E^{c} \Perp F, E \Perp F^{c}, E^{c} \Perp F^{c}$
Proof: $E \Perp F^{c}$?

$$
\mathbb{P}(E)=\underbrace{\mathbb{P}(E \cap F)}_{\mathbb{R}(E) P(F) \text { by assumption }}+\mathbb{P}\left(E_{\cap} F^{c}\right)
$$

$$
\Rightarrow \mathbb{P}\left(E \cap F^{c}\right)=\mathbb{P}(E)(1-P(F))=\mathbb{P}(E) \cdot P\left(F^{c}\right) \quad \mathbb{B}
$$

Note: $E \Perp \phi$, and thus $E \Perp \Omega$, for any event E
Warning: disjoint events are not independent (unless $=\phi$ or Ω)
Independence of more than 2 events
Def Events E_{1}, E_{2}, \ldots are independent if

$$
\mathbb{P}\left(\bigcap_{i \in I} E_{i}\right)=\prod_{i \in I} \mathbb{P}\left(E_{i}\right) \quad \forall \text { finite } I \subset \mathbb{N}
$$

Warning: pairwise independence $\left(E_{i} \cap E_{j}=\varnothing \quad \forall i, j\right) \nRightarrow$ independence
Example: $\Omega=\{4$ points $\}, \quad P=$ unit (Ω)

$$
\begin{aligned}
& P(E)=P(F)=P(G)=\frac{2}{4}=\frac{1}{2} ; \\
& P\left(E_{n} F\right)=\frac{1}{4}=P(E) P(F) \Rightarrow E \perp F .
\end{aligned}
$$

Independence is a strong property. Requires 2^{n} equations to hold

Similarly for the other pairs \Rightarrow pairwise index.
But $\mathbb{P}\left(\underset{\varnothing \square}{E_{n} F_{n} G}\right)=0 \neq P(E) P(F>P(G) \Rightarrow$ Nor indef

Def Families of events $\varepsilon_{1}, \varepsilon_{2}, \ldots$ are independent if events E_{1}, E_{2}, \ldots are independent $\forall E_{i} \in \varepsilon_{i}$

Warning: $\varepsilon \Perp \mathcal{F} \neq \sigma(\varepsilon) \mathbb{L} \sigma(F)$
Consider $E:=\{E, G\}, F=\{F\}$ in the example $p .34$.
Then $\varepsilon \Perp \notin$ by pairwise independence,
bat $E \cap G=\{2\}$ and $G=\{1,3\}$ are disjoint $\Rightarrow E \cap G \notin \mathcal{L} \Rightarrow \sigma(\varepsilon) \mathscr{L} \sigma(F)$

- WILC Show: if each family ε_{i} is closed under finite intersections, then $\sigma\left(\varepsilon_{i}\right)$ are independent. ()) (ε would be forced to contain EnG) This follows from Dynkin's $\pi-\lambda$ theorem

Def A family of sets P is called a π-system If A is closed under finite intersections, ie.

$$
E, F \in P \Rightarrow E \cap F \in \mathcal{P}
$$

Ex: \{rectangles\} in \mathbb{R}^{2}
Def A family of sets \mathcal{L} is called a λ-system if \mathcal{L} is closed under complements and countable disjoint unions, ie.
(i) $E \in \mathcal{L} \Rightarrow E^{c} \in \mathcal{L}$
(ii) $E_{1}, E_{2}, \ldots \in \mathcal{L}$ are disjoint $\Rightarrow \bigsqcup_{i=1}^{\infty} E_{i} \in \mathcal{L}$

- Remark: The notion of λ-system is strictly weaker than σ-algebra:

Example All events in $(\Omega, \Sigma, \mathbb{P})$ that are independent of a given event E, i.e. $\mathcal{L}:=\{E \in \Sigma: E \Perp F\}$ is a λ-system. But not always a σ-algebra.
λ-system?
(i) $E \Perp F \Rightarrow E^{c} \Perp F \quad$ (stability p. 34)
(ii) $E_{i} \perp F$ disjoint $\Rightarrow \sum_{i=1}^{\infty} E_{i} \perp F$?

Example:
$\mathscr{L}=\{E, G\}$ in ex. afore.

$$
\begin{aligned}
\mathbb{P}\left(\left(\bigcup_{i} E_{i}\right) \cap F\right) & =\mathbb{P}\left(\bigcup_{i}\left(E_{i} \cap F\right)\right)=\sum_{i} \mathbb{P}\left(E_{i} \cap F\right)=\sum_{i} P\left(E_{i}\right) \mathbb{P}(F) \\
& =\left(\sum_{i} P\left(E_{i}\right)\right) \mathbb{P}(F)=P\left(\varphi_{i} E_{i}\right) P(F) \text { Yes. }
\end{aligned}
$$

TuM (Dynkin's $\pi-\lambda$ theorem)
let P be a π-system and \mathcal{L} be a λ-system. Then

$$
\mathcal{P} \subset \mathcal{L} \Rightarrow \sigma(P) \subset \mathscr{L} .
$$

Trivial fer σ-algebras \mathcal{L}.
THM If $\varepsilon_{1}, \varepsilon_{2}, \ldots$ are independent π-systems, then $\sigma\left(\varepsilon_{1}\right), \sigma\left(\varepsilon_{2}\right), \ldots$ are independent.

Proof for two π-systeens: \quad (general case $\rightarrow H W$)

$$
\varepsilon \Perp \mathcal{F} \stackrel{?}{\Rightarrow} \sigma(\varepsilon) \Perp \sigma(F)
$$

Enough to check that $\forall F \in \mathcal{F}$:

$$
\varepsilon \mathbb{F} \Rightarrow \sigma(\varepsilon) \Perp F
$$

Assume $\varepsilon \mathbb{\perp} F$. Consider the family of all events independent of F :

$$
\mathcal{L}:=\{E \in E: E \Perp F\} .
$$

Then \mathcal{L} is a λ-system (Ex.p.35), and $\varepsilon<\mathcal{L}$ by assumption.

$$
\xrightarrow{\pi-\lambda \mathrm{H}_{m}} \sigma(\varepsilon)<\mathcal{L} \Rightarrow \sigma(\varepsilon) \mathbb{\Perp} F .
$$

Another (classical) use of $\pi-\lambda$ the:
THM (Uniqueness of measures)
If measures μ, μ^{\prime} on (Ω, F) agree on all sets that form a π-system $\rho \subset F$ then μ, μ^{\prime} agree on $\sigma(\mathcal{P})$.

Proof $\mathcal{L}:=\left\{B \in \sigma(P): \mu(B)=\mu\left(B^{\prime}\right)\right\}$ e.g. intervals is a λ-system (check! easy)
$P \subset \mathcal{L}$ by assumption. $\xrightarrow{\pi-\lambda \text { the }} \sigma(P)<\mathcal{L} \Rightarrow \mu, y^{\prime}$ agree on $\forall B \in \sigma(P)$. I.

